文章编号: 1001-3806(2018)06-0811-06

机载远程激光测距机最大允许噪声仿真研究

阎得科^{1,2},郝培育¹,霍 晶¹,郭 赛¹,敬嘉雷¹

(1. 中国航空工业集团公司 洛阳电光设备研究所,洛阳 471023; 2. 光电控制技术重点实验室,洛阳 471009)

摘要:为了提高机载远程激光测距机接收系统设计的可行性,从激光测距方程出发,分析了最小探测灵敏度与测程的关系。对回波频谱特性、探测模块带宽和放大器带宽进行了仿真,计算了回波信号的放大倍数,推算出主放大器输出信号的大小。依据高斯白噪声模型和主放大器输出信号值,推算了激光测距接收电路的最大允许输入噪声值。设计了电路并进行了试验测试。结果表明,激光接收灵敏度与理论值的偏差为5.7%,消光比法对应空中小目标最大测程与理论值的偏差仅为1.5%。该噪声分析方法对机载远程激光测距机的接收系统设计具有一定的指导意义。

关键词:激光技术;机载激光测距;噪声;探测灵敏度;频谱;带宽

中图分类号: TN247 文献标志码: A doi:10.7510/jgjs.issn.1001-3806.2018.06.016

Simulation and study on maximum permitted noise of airborne long-range laser range-finders

YAN Deke^{1,2}, HAO Peiyu¹, HUO Jing¹, GUO Sai¹, JING Jialei¹

(1. Luoyang Institute of Electro-optical Equipment, Aviation Industry Corporation of China, Luoyang 471023, China; 2. Science and Technology on Electro-optic Control Laboratory, Luoyang 471009, China)

Abstract: In order to improve the design feasibility of receiving system for an airborne laser rangefinder, the maximum allowable input noise level was analyzed according to the parameters of the maximum range and signal-to-noise ratio threshold. Noise was closely related to the sensitivity of laser reception. Based on laser ranging equation, the relationship between the minimum detection sensitivity and detection range was analyzed. The characteristics of echo spectrum, the bandwidth of detection module and amplifier were simulated. The magnification of echo signal and the value of output signal of main amplifier were calculated. At the same time, according to Gaussian white noise model and output signal value of main amplifier, the maximum allowable input noise value of laser ranging receiving circuit was calculated. The circuit was designed and tested. The results show that the deviation between laser reception sensitivity and theoretical value is 5.7%. The deviation between the maximum value of extinction ratio method and the theoretical value is only 1.5%. The method of noise analysis has important guiding significance for the design of receiving system of airborne long-range laser range-finders.

Key words: laser technique; airborne laser ranging; noise; detection sensibility; frequency spectrum; bandwidth

引 言

在现代空战中,由于飞机隐身特性的要求以及防 区外远程探测的需求,致使机载激光测距回波信号极 其微弱,甚至淹没于噪声之中。噪声与接收系统灵敏 度密切相关,接收灵敏度是激光测距方程的重要参量。 以往文献中^[1-7]多见对背景噪声、探测器散粒噪声、产 生复合噪声、光子波动噪声、热噪声等的分离分析,缺

E-mail:eoei@vip.sian.com

少对激光测距噪声的系统分析,对激光测距接收探测 电路最大允许输入噪声很难有具体指导作用。如何根 据空中小目标最大测程的要求,分析激光接收电路的 最大允许输入噪声,进而评估激光回波接收探测放大 检出电路设计方案的可行性,是激光测距机系统设计 的重要前提条件。

激光测距接收系统的总噪声包含背景光噪声、雪 崩管探测模块噪声、主放大器电噪声以及信号处理电 路引入的噪声,噪声与接收灵敏度及最大测程密切相 关。文中首先对此进行了仿真分析;其次,根据空中小 目标最大测程要求,通过激光测距方程,分析了所需最 小探测灵敏度;而后,通过对回波频谱特性以及探测模

作者简介: 阎得科(1982-), 男, 硕士, 工程师, 主要从事机 载激光测距总体论证及光电探测方面的研究。

收稿日期:2017-12-06;收到修改稿日期:2018-03-06

块和放大器带宽的仿真分析,计算了回波信号的放大 倍数,推算出了主放大器输出信号的大小;最后,依据 高斯白噪声模型和主放大器输出信号值,得出了激光 测距接收电路的最大允许输入噪声值。据此,设计电 路并进行试验测试,验证了理论分析,为远程激光回波 接收探测电路的设计奠定了理论和实践基础。

1 激光测距接收系统噪声分析

激光测距机接收系统主要由接收光学部件、雪崩 管(avalanche photodiode, APD)探测模块、主放大器单 元以及数字信号处理(digital signal processing, DSP)电 路等组成,见图1。其总噪声主要包括背景光噪声、雪 崩管探测模块噪声、主放大器电噪声以及信号处理电 路引入的噪声。图中, FPGA 为现场可编程门阵列 (field-programmable gate array), FIFO 为先入先出(first in first out)队列, A/D 为模/数(analogue/digital)转换 器。

Fig. 1 Block diagram of laser ranging receiving system

1.1 背景光噪声分析

背景光主要包含目标对太阳光的反射、大气的散射以及太阳光的直射^[1],总背景光功率 *P*_b 可表示如下:

$$P_{\rm b} = \frac{\pi}{16} \eta_{\rm r} \Delta \lambda \theta_{\rm r}^{2} D_{\rm r}^{2} \Big[\rho T_{\rm a} H_{\lambda} \cos\theta \cos\varphi + \frac{\beta}{4\alpha} (1 - T_{\rm a}) H_{\lambda} + \pi L_{\lambda} \Big]$$
(1)

式中, η_r 为接收光学系统透过率, $\Delta\lambda$ 为窄带滤光片带 宽, θ_r 为接收视场角, D_r 为接收系统有效通光直径, ρ 为目标反射系数, T_a 为大气透过率, H_λ 为太阳光对地 面的光谱辐射照度, θ 为太阳射线和目标表面法线的 夹角; φ 为目标表面法线与接收光轴之间的夹角, β 为 大气散射系数, α 为大气衰减系数, L_λ 为太阳光的大 气散射的光谱辐射亮度。为方便计算,简化模型,令 $\alpha = 1,\beta = 1,\cos\theta = 1,\cos\varphi = 1,$ 并取 $\rho = 0.2,\eta_r = 0.6,$ $T_a = 0.87$ 。其中, $\cos\theta = 1,\cos\varphi = 1,$ 意味着太阳射线和 目标表面法线的夹角是0°,目标表面法线与接收光轴 之间的夹角也是0°,这种情况代表在空对空机载测距 时,太阳射线、目标机法线以及载机测距机接收光轴共轴,且载机接收光学系统处于太阳射线与目标机中间,目标机法线正向对准太阳射线,载机接收光学系统正向对准目标机法线方向,此时,载机接收光学系统接收的目标机反射的背景光为最大值, $\cos\theta = 1, \cos\varphi = 1$, 是对背景光理论分析时较苛刻的假设。对于 $\alpha = 1$ 和 $\beta = 1$ 这个假设条件的依据见参考文献[8],对于 1064nm 波段,不同海拔、不同纬度、不同季节条件,大 气衰减系数 α 与大气散射系数 β 的取值不同,文中 $\alpha = 1$ 和 $\beta = 1$ 是综合上述 3 种条件,并结合文中最大 测程 $R_{max} = 65$ km 要求,取的一个较简化的模型。

(1)式可简化如下:

$$P_{\rm b} = \frac{\pi}{16} \eta_{\rm r} \Delta \lambda \theta_{\rm r}^{2} D_{\rm r}^{2} \Big[\rho T_{\rm a} H_{\lambda} + \frac{1}{4} (1 - T_{\rm a}) H_{\lambda} + \pi L_{\lambda} \Big]$$
(2)

$$P_{\rm b} \propto (\eta_{\rm r} \Delta \lambda \theta_{\rm r}^{2} D_{\rm r}^{2}) \times (\rho T_{\rm a}) \tag{3}$$

可见,背景噪声光功率与测距机接收系统参量呈 正相关,与大气及目标特性呈正相关。采用 MODT-RAN4.0 软件对太阳光谱辐射亮度 *L*_λ、太阳光谱辐射 照度 *H*_λ进行仿真,仿真结果见图 2 和图 3。

Fig. 3 Simulation of radiant illumination of sun light

由仿真结果可知,在 1064nm 波段,太阳光的大气 散射的光谱辐射亮度 $L_{\lambda} = 3.04 \times 10^{-6} \text{W/(cm}^2 \cdot \text{sr} \cdot \text{nm})$,太阳光对地面的光谱辐射照度 $H_{\lambda} = 6.5 \times 10^{-5} \text{W/}$ (cm² · nm)。 激光测距机接收系统以及大气和目标的参量选取 分别为:背景噪声光功率 $P_{\rm b} = 2.7 \,\mathrm{nW}, \eta_{\rm r} = 0.6, \Delta \lambda = 5 \,\mathrm{nm}, \theta_{\rm r} = 1.0 \,\mathrm{mrad}, D_{\rm r} = 0.14 \,\mathrm{m}, T_{\rm a} = 0.84, \rho = 0.2$ 。

1.2 雪崩管探测模块噪声分析

雪崩管探测模块由雪崩管探测器及前置放大器组成,其噪声模型如图 4 所示^[2]。图中, OPA 为运算放 大器(operation anplifier)。

Fig. 4 Noise model of APD detection unit

总噪声包括四部分:雪崩管噪声、跨阻热噪声,前 置放大器等效电流噪声、前置放大器等效电压噪声。 总噪声表示如下^[2]:

$$I_{n}^{2} = I_{APD}^{2} + 2qI_{AMP} + (V_{AMP}\omega_{AMP}C)^{2} + \frac{4kT}{R_{AMP}}$$
(4)

式中,*I*_n为总噪声电流,*I*_{APD}是雪崩管噪声电流,*q* 是电子电荷,*I*_{AMP}是前置放大器等效输入噪声电流,*V*_{AMP}是放大器等效输入噪声电压,*ω*_{AMP}是前置放大器的截止带宽,*C* 是总等效输入电容,*k* 是玻尔兹曼常数,*T* 是温度,*R*_{AMP}是前置放大器的跨阻。雪崩管噪声电流进一步用 McIntyre 等式表示:

$$I_{\text{APD}} = \sqrt{2q[I_{\text{s}} + (I_{\text{b}} + I_{\text{PD}})M^2F]}$$
(5)
$$I_{\text{APD}} = \frac{1}{\sqrt{2q[I_{\text{s}} + (I_{\text{b}} + I_{\text{PD}})M^2F]}}$$
(6)

$$I_{\rm PD} = PR_M \tag{6}$$

式中, I_s 是面暗电流, I_b 是体暗电流, I_{PD} 为光电流,M是 倍增因子,F是过剩噪声因子,P是入射光功率, R_M 为 单位倍增因子条件下光谱响应度。雪崩管的面暗电流 I_s 、体暗电流 I_b 由 Arrhenius 等式表示:

$$I(T) = I_{\rm ref} \exp\left[E_{\rm a}\left(\frac{q}{k}\right)\left(\frac{1}{T_{\rm ref}} - \frac{1}{T}\right)\right]$$
(7)

式中, E_a 是电子势能, T_{ref} 是参考温度, I_{ref} 是参考温度 所对应的噪声电流。雪崩倍增因子M表示如下:

$$M = \frac{K}{\left(V_{\rm b} - V_{\rm o}\right)^n} \tag{8}$$

式中,*V*_b是雪崩击穿电压,*V*_o是雪崩偏压,*K*是与雪崩 管探测器相关的常数,*n*为指数。

本文中雪崩管探测模块型号为 LLAM-1060-R8BH,其-3dB带宽为200MHz,噪声等效功率谱密度 为50fW/√Hz。

1.3 级联电路噪声分析

定义放大器的噪声系数 *F*_n 为放大器的输入功率 信噪比与输出功率信噪比之比^[1], *F*_n 值越大, 放大器 性能越坏。

$$F_{\rm n} = \frac{S_{\rm i}/N_{\rm i}}{S_{\rm o}/N_{\rm o}} \tag{9}$$

式中,*S*_i代表输入信号功率,*N*_i代表输入噪声功率,*S*_o代表输出信号功率,*N*_o代表输出噪声功率。

多级级联放大器的噪声系数表示如下^[1]:

$$F_{n} = F_{n,1} + \frac{F_{n,2} - 1}{K_{g,1}} + \frac{F_{n,3} - 1}{K_{g,1} \times K_{g,2}} + \cdots + \frac{F_{n,m} - 1}{K_{g,1} \times K_{g,1} \times \cdots \times K_{g,m-1}}$$
(10)

式中,*K*_g为放大器电压增益平方。可见,当前级的*K*_g 较大时,后级放大器的的噪声系数相对于前级的一般 可忽略,采用内置前置放大器且具有内增益的 APD 模 块,后级主放大器的噪声可以忽略不计。

由上述噪声分析可以得出,激光测距接收系统的 噪声主要由背景光噪声及雪崩管探测模块噪声两部分 组成。接收系统的噪声直接影响到激光测距的探测灵 敏度,最终决定激光测距机的最大测程,欲分析激光测 距系统的最大允许输入噪声,应从测距方程分析着手。

2 激光测距最大测程与最大输入噪声分析

2.1 测距方程分析

最大输入噪声与接收灵敏度紧密相关,而接收灵 敏度是激光测距方程的重要参量,直接影响到激光测 距机的最大测程,故而欲分析最大测程与最大允许输 入噪声的关系,应先分析测距方程。空中小目标激光 测距方程表示如下:

$$R_{\rm s} = \left(\frac{E_{\rm t}T_{\rm t}}{\tau\theta_{\rm t}^{\,2}}\right) \times \left(\frac{D_{\rm r}^{\,2}T_{\rm r}}{\pi P_{\rm r}}\right) \times (A_{\rm s}\rho T_{\rm a}^{\,2}) \qquad (11)$$

式中,各参量定义及取值如下:激光发射单脉冲能量 $E_t = 200 \text{mJ}, 激光脉冲宽度 \tau = 10 \text{ns}, 发射系统透过率$ $T_t = 0.9, 激光发散角 \theta_t = 0.45 \text{mrad}, 接收系统透过率$ $T_r = 0.6, 接收系统有效通光直径 D_r = 0.14 \text{m}, 小目标$ 面积 $A_e = 2 \text{m}^2$, 目标反射系数 $\rho = 0.2$, 大气透过率 $T_a = 0.84$, 最大测程 $R_{\text{max}} = 65 \text{km}$ 对应的接收灵敏度 $P_r \leq 5.3 \text{nW}_o$

由于采用脉冲激光测距体制,回波信号的放大倍数与脉冲宽度及探测器、放大器的带宽密切相关,在测距信息处理电路距离检出阈值信噪比为2:1(噪声为均方根值)的情况下,欲根据空中小目标最大测程对

应的最小探测灵敏度,评估激光接收系统的最大允许 输入噪声,需分析回波信号的频谱特型及探测器、放大 器带宽特性。

2.2 回波信号频谱分析

在机载激光测距系统中,发射高斯激光脉冲宽度 半峰全宽为(10±5)ns,由于目标及大气对发射光波 的作用,回波采用钟形脉冲函数模型表示,回波脉宽半 峰全宽按10ns 计算。

钟形脉冲函数可表示如下:

$$f(t) = \alpha' \exp(-\beta' t^2)$$
(12)

Fig. 5 Frequency spectrum analysis of pulse signals

式中, α' 和 β' 为系数常量,t代表时间,其中 $\beta' > 0$ 。钟形脉冲函数的傅里叶变换可表示如下:

$$F(\omega) = \sqrt{\frac{\pi}{\beta'}} \alpha' \exp\left(-\frac{\omega^2}{4\beta'}\right)$$
(13)

式中, ω 代表角频率, $\omega = \pi f, f$ 代表频率。类比(12) 式和(13)式,在t = 6ns 处,f(6ns)对应的钟形函数可 表示为:

$$f(t) = \alpha' \exp\left[-\left(\frac{t}{6}\right)^2\right]$$
(14)

式中,时间的单位为 ns,由(14)式可计算回波脉宽半 峰全宽为 10ns。(14)式的傅里叶变换函数可表示如 下:

$$F(f) = \sqrt{\frac{\pi}{\beta'}} \alpha' \exp\left[-\left(\frac{\omega}{333}\right)^2\right] = \beta' \exp\left[-\left(\frac{\omega}{333}\right)^2\right] = \beta' \exp\left[-\left(\frac{\pi f}{333}\right)^2\right] \quad (15)$$

式中,频率f的单位为 MHz。在傅里叶频域内,当f = 150MHz,回波信号衰减为 $1/e^2$,脉宽为 10ns 的钟形函数傅里叶变换及频带信号比例仿真分析见图 5。

3 探测模块及主放大器选型分析

激光探测模块及主放大器应满足以下两点:探测 模块-3dB带宽≥信号1/e²衰减对应带宽;主放大器 -3dB带宽≥信号1/e²衰减对应带宽。

3.1 探测模块选型分析

激光回波探测模块选择集成负指数热敏电阻、雪崩管探测器、前置放大器、热电制冷器于一体的制冷型 探测模块 LLAM-1060-R8BH,其主要参量如下:-3dB 带宽为2.0×10⁻⁸ MHz、光谱电压响应度为2.0× 10⁵kV/W,噪声等效功率谱密度为5.0fW/√Hz,探测 模块带宽大于信号1/e²衰减对应带宽^[9-11]。

信号(10ns)1/e² 衰减带宽(150MHz)对应的该探 测模块噪声等效功率为0.61nW,依据最大测程 R_{max} = 65km的要求,当激光回波信号强度为5.3nW时,计算 制冷型探测模块输出信噪比为8.7:1,大于阈值信噪比 2:1,且余量较多,可见,探测模块选型合理。

3.2 主放大器选型及平均放大倍数仿真计算

主放大器选择 AD8367^[12],其 - 3dB 带宽为 500MHz,大于信号 1/e² 衰减对应带宽。由主放大器 AD8367 的增益伯德图及回波信号的频谱特性,可得:

$$G = \frac{\int_{0}^{f'} [F'(\omega) \times G'(\omega)] df}{f'}$$
(16)

式中,*G*代表放大器平均放大倍数,*F*′(ω)代表回波信号频谱,*G*′(ω)代表放大器增益谱,*f*′代表带宽。对于脉宽为 10ns 的回波信号,在频谱带宽为 100MHz 时,可得平均放大倍数 *G* = 42.9。主放大器增益频谱曲线仿真见图 6。

Fig. 6 Simulation of gain versus frequency of main amplifier a—voltage gain b—the normalized amplitude c—simulation of voltage gain

4 电路最大允许输入噪声分析

由上面的分析可知,激光测距接收系统的噪声主要由背景光噪声及雪崩管探测模块噪声两部分组成,其中,背景光功率 $P_b = 2.7$ nW,探测模块噪声等效功率 $P_{APD} = 0.61$ nW,两者之和 $P_n = 3.3$ nW,且该值小于最大测程 $R_{max} = 65$ km 对应的接收灵敏度光功率 $P_r = 5.3$ nW,这两种噪声均按高斯白噪声模型分析。

高斯白噪声,其幅度分布服从高斯分布,功率谱密 度服从均匀分布,即从频谱角度来说,频谱上任意时刻 出现的噪声幅值都是随机的;从概率密度角度来说,高 斯白噪声的幅值分布服从高斯分布。高斯白噪声的概 率 Y 分布关系表示如下:

$$Y_{\pm 3\sigma} = \int_{\overline{X} - 3\sigma}^{\overline{X} + 3\sigma} \frac{1}{\sigma \sqrt{2\pi}} \exp\left[-\frac{(X - \overline{X})^2}{2\sigma^2}\right] dX \quad (17)$$

式中, *X*为噪声数学期望值, 对于白噪声, 其值为0; *σ* 为噪声均方根值。可以计算, 噪声因子大于3的概率 为0.3%, 由此可得, 6倍于σ的高斯噪声峰峰值或3 倍于σ的高斯噪声正向峰值, 发生的概率为99.7%。 高斯白噪声功率谱及幅值概率分布及幅值概率图仿真 见图7。图7a中, 横坐标代表频率, 单位是 Hz; 图7b 和图7c中横纵坐标均无量纲。

据上面所述小目标最大测程参量、探测模块参量、

Fig. 7 Simulation of Gaussian noise

主放大器平均放大倍数以及高斯白噪声峰值与均方根 值的关系,由下面两式可得激光测距接收电路输入噪 声正向峰值 V_p最大允许值为68mV,噪声峰峰值 V_{pp}最 大允许值为136mV。据高斯噪声统计学理论,可以得 出,在距离检出阈值信噪比为2:1、激光测距接收电路 输入噪声正向峰值 V_p最大允许值为66mV、噪声峰峰 值 V_{pp}最大允许值为136mV的前提下,空中小目标最 大测程等于65km 发生的概率可高达99.7%。

$$V_{\rm p} = 3P_{\rm r}R_{\rm v}G \tag{18}$$

$$V_{\rm PP} = 6P_{\rm r}R_{\rm v}G \tag{19}$$

式中, P_r 代表接收灵敏度光功率,取值为5.3nW; R_v 代表电压响应度,取值为2.0×10⁵V/W;G为放大器平均放大倍数,取值为42.9。激光接收电路输入噪声分析中其它参量分别是: $V_{APD} = 1.06mV$,运算放大器噪声电压 $V_{OPA} = 45.5mV$,噪声均方根值为22.7mV。

5 试验验证

依据上述回波信号频谱分析,探测模块、放大器选型,设计激光接收探测电路,测试主放大器输出端本底噪声,测试结果见图 8。从图中可以看出,噪声的峰峰值 $V_{\rm PP}$ 最大值不大于 136mV。将上述激光回波探测电路应用于机载激光测距系统中,采用消光比测试法,对近距离标定大目标测距。测试条件如下:大气能见度为 7.5km;大目标标定距离 $R_{\rm b}$ = 4.2km;消光比衰减量 N = 46dB。

Fig. 8 Test of output noise of amplifier 测试回波波形见图 9。图 9 中,横坐标为时间信

激

Fig. 9 Test of echo wave signal of laser rangefinder

息,每点代表 5ns,纵坐标代表回波信号幅值,每点代表 5.86mV。此时,回波距离值稳定输出 4.2km。由大目标测距方程:

$$P_{\rm r} = \frac{E_{\rm t} T_{\rm t} T_{\rm r} D_{\rm r}^{2} \rho T_{\rm a}^{2}}{4R_{\rm b}^{2} \tau N}$$
(20)

计算激光探测组件接收灵敏度达 5.6nW。大目 标消光比测距参量如下:激光发射单脉冲能量 E_t = 200mJ;激光脉冲宽度 τ = 10ns;发射系统透过率 T_t = 0.9;接收系统透过率 T_r = 0.6;接收系统有效通光直 径 D_r = 0.14m;目标反射系数 ρ = 0.4;大气透过率 T_a = 0.43。

测试表明,激光探测组件接收灵敏度光功率达 5.6nW,与理论要求值5.3nW的偏差为5.7%。将实 测灵敏度光功率5.6nW带入测距公式(11)式中,计算 相对应的空中小目标的最大测程为64km,与理论要求 值65km的偏差仅为1.5%。

6 结 论

阐述了接收电路最大允许输入噪声分析方法,设 计了激光测距电路,通过消光比法对外场标定目标性 能测试,给出了试验结果,印证了理论分析。试验表 明,实测激光探测组件接收灵敏度与理论要求值的偏 差为5.7%,消光比法折算空中小目标最大测程与理 论要求值的偏差为1.5%,验证了接收电路最大输入 噪声分析方法的正确性。在外场试飞过程中,发现对 目标机迎头测试时,实测距离值与消光比法折算距离 值存在不小于20%的偏差,在后续工作中,需对高斯 噪声模型进行修正,这是由于激光测距接收系统噪声 同时含有非均匀的周期性噪声。

参考文献

- AN Y Y, ZENG X D. Photoelectricity detection principle [M]. Xi'an: Xidian University Publishing House, 2004: 42-45 (in Chinese).
- [2] FREDERIC L. Low noise optical receiver using Si APD[J]. SPIE, 2009,7212:523-534.
- [3] MA J L, FAN X T, YAN D K, et al. Design of laser range finding receiver circuit based on cooling-APD[J]. Infrared and Laser Engineering, 2013, 42(8): 2041-2044(in Chinese).
- GUO S, DING Q X, YAN Y. Noise suppression technologies used for avalanche photodiode [J]. Electronics Optics & Control, 2012, 19 (3): 69-73(in Chinese).
- [5] FENG L L. Method of simulated testing of pulse laser rangefinder [J]. Infrared and Laser Engineering, 2003, 32(2):127-129(in Chinese).
- [6] SUN Zh W, LIU Y J. Design of a new performance testing instrument of laser rangefinders[J]. Laser Technology, 2011, 35(6): 792-794 (in Chinese).
- [7] WU G X, DUAN F J, GUO H T. Optoelectronic heterodyne mixing and parameter optimization of avalance photodiodes [J]. Laser Technology, 2015, 39(6): 802-805 (in Chinese).
- [8] LI J Zh. Handbook of optics(volume two) [M]. Xi'an: Shaanxi Science and Technology Press, 2010; 1802 (in Chinese).
- [9] EXCELITAS Co. A user guide—understanding avalanche photodiode for improving system performance [EB/OL]. (2017-12-11). http:// www.excelitas.com/downloads/app_avalanchephotodiodesusersguide. pdf.
- [10] PROKE S. Influence of temperature variation on optical receiver sensitivity and its compensation [J]. Radio Engineering, 2007, 16 (3): 13-18.
- [11] EXCELITAS Co. High-speed low-light analog APD receiver modules LLAM Series. www.excelitas.com. [EB/OL]. (2017-12-11).http://www.excelitas.com/Downloads/DTS_LLAM.pdf.
- [12] ANALOG DEVICES Inc. AD8367 www. analogy. com. [EB/OL]. (2018-1-16). http://www. analog. com/media/en/technical-documentation/data-sheets/AD8367. pdf.