文章编号: 1001-3806(2017)06-0831-05

# CO<sub>2</sub> 激光诱导空气等离子体放电通道特性研究

李凤舞,左都罗\*,王新兵

(华中科技大学 武汉光电国家实验室,武汉 430074)

**摘要**:为了研究高能脉冲 CO<sub>2</sub> 激光诱导空气等离子体放电通道的特性,建立了高压电容充放电实验平台,激光束经 离轴抛物聚焦镜汇聚,引发间距可调的盘状电极和针状电极之间的等离子体放电通道。利用电气参量测量、发射光谱测 量等手段,分析了等离子体放电通道的启动特性、阻抗特性和等离子体密度。结果表明,激光束与放电方向同轴的结构 以及较大的脉冲能量,使得激光诱导等离子体放电通道的启动时间大幅缩短,50mm 间距的等离子体通道,启动时间约为 2μs;激光诱导等离子体放电通道的阻抗很小,约1Ω~2Ω,并且阻抗值随放电电压的增加有减小的趋势,而与等离子体 通道长度的关系不明显;由谱线的 Stark 展宽计算获得的空气击穿之后、放电启动之前的等离子体电子密度约为 10<sup>9</sup>cm<sup>-3</sup>,尽管放电启动时等离子体辐射显著增强,但等离子体密度近乎单调下降。这些结果将有利于高能脉冲 CO<sub>2</sub> 激 光诱导空气等离子体放电通道的应用研究。

关键词: 激光技术;等离子体通道;等离子体阻抗;等离子体密度 中图分类号: 0437 文献标志码: A doi:10.7510/jgjs.issn.1001-3806.2017.06.013

## Characteristics of discharge channels of air plasma induced by CO<sub>2</sub> laser

LI Fengwu, ZUO Duluo, WANG Xinbing

(Wuhan National Laboratory for Optoelectronics, Huazhong University of Science & Technology, Wuhan 430074, China)

Abstract: In order to study characteristics of discharge channels of air plasma induced by high-energy pulsed CO<sub>2</sub> laser, a charging and discharging experimental setup of high voltage capacitor was established, in which the pulsed laser beam was focused by a parabolic reflector to trigger the plasma channel in the adjustable gap between a disk-like electrode and a needle-like electrode. Based on the measurements of electric parameters and emission spectra, the characteristics on start-up, impedance and plasma density of the discharge channel were analyzed. It is found that the start-up time become much shorter benefited from the high pulsed-energy and coaxial structure of laser beam and discharge direction, for a plasma channel with length of 50mm, the start-up time of the discharge was only about  $2\mu s$ ; the discharge channel has rather low impedance of  $1\Omega \sim 2\Omega$ , and this impedance has a decreasing tendency with the increasing of discharge voltage, which has no significant correlation with the length of plasma channel; the electron density after the laser-induced breakdown and before the electric discharge is on the level of  $10^{19}$  cm<sup>-3</sup> calculated from the Stark broadening of the emission lines, though the emission become much stronger after the startup of electric discharge, the plasma density keeps decreasing. These results will be helpful for the application of laser-induced plasma channel.

Key words: laser technique; plasma channel; plasma impedance; plasma density

## 引 言

激光诱导空气等离子体通道的应用是受到长久而 广泛关注的一个领域。如果该通道被用来引发放电,称 之为空气等离子体放电通道。早期,它被用来引雷,避 免重要场所遭雷击破坏。日本、俄罗斯有多家研究机构 对这一应用进行了系统的研究,他们利用高能脉冲 CO<sub>2</sub> 激光击穿长空气等离子体,引发云端电荷主动释放<sup>[1-2]</sup>。

作者简介:李凤舞(1992-),男,硕士研究生,现主要从事 激光诱导空气等离子体的研究。

\* 通讯联系人。E-mail:zuoduluo@hust.edu.cn 收稿日期:2016-12-14;收到修改稿日期:2017-01-21 如果引导的电能能被有效收集,则激光等离子体放电通 道有可能为人类提供一个巨大的绿色能源<sup>[3]</sup>。

飞秒激光等超短脉冲激光器的出现,使得激光等 离子体通道的研究进入新的阶段。自聚焦和衍射扩展 的平衡,使得该类激光束易于引发长距离的连续等离 子体。研究者对这类激光诱导等离子体通道的触发和 导引<sup>[4]</sup>、等离子体放电通道的形成机制<sup>[5]</sup>、等离子体 通道的导电特性<sup>[6]</sup>,以及不同波长对等离子体通道特 性的影响<sup>[7]</sup>进行了大量的研究。这类研究的主要应 用目标仍是激光引雷等应用。

国内西南技术物理所<sup>[8]</sup>、中国科学院物理所<sup>[9]</sup>、 中国科学院安徽光机所、中国科技大学、北京工业大 技

术

光

激

学<sup>[10]</sup>等单位对激光等离子体通道也进行了研究。其中,西南技术物理研究所使用了248nm 纳秒级远紫外脉冲激光击穿空气形成等离子体通道,测试电离击穿阈值,并进行了传能实验<sup>[8]</sup>;中国科学院物理所使用了400nm和800nm的飞秒激光形成等离子体通道,接着进行了传能实验并对等离子体的参量进行了测量<sup>[9]</sup>;中国科学院安徽光机所等单位对810nm飞秒激光产生的激光等离子体的精细动能结构进行了计算<sup>[10]</sup>。国内最近的研究基本上采用了飞秒激光等超短脉冲激光。

脉冲 CO<sub>2</sub> 激光由于它在高脉冲能量、高平均功率 方面的明显优势,对形成长距离、高导电能力的等离子 体通道有利<sup>[11]</sup>。华中科技大学在高能脉冲 CO<sub>2</sub> 激光 器及其应用方面有较长的研究历史<sup>[12-14]</sup>。最近, DENG 等人报道了低能量的亚微秒脉冲 CO<sub>2</sub> 激光触发 放电等离子体通道的研究工作,给出了间距 8mm 石墨 球头之间的激光触发放电等离子体通道的基本特 性<sup>[15]</sup>。在此基础上,本文中进行了微秒脉冲大能量脉 冲 CO<sub>2</sub> 激光触发长放电等离子体通道的探索,利用脉 冲能量约 50J 的激光束通过离轴抛物面反射镜聚焦, 引发了最长约 100mm 的激光触发放电等离子体通道, 对放电等离子体通道的启动时间特性、电气特性、光谱 特性以及等离子体密度进行了测量和计算,为更长等 离子体通道的探索作了准备。

#### 1 实验装置

高能脉冲 CO<sub>2</sub> 激光诱导空气等离子体通道研究 的实验装置如图 1 所示。所采用的激光器为实验室自 制的横向激励大气压(transverse excited atmospheric pressure, TEA) CO<sub>2</sub> 激光器, 波长 10.6 $\mu$ m, 脉冲能量 46.5J ± 0.3J, 10% 峰值全宽约 6 $\mu$ s。激光束经焦距 500mm 的离轴抛物面反射聚焦镜聚焦到两个电极之 间。两电极的中心连线与聚焦激光束的光轴重合, 左 侧的电极为直径 5cm、厚 1cm 的铜质圆板电极, 靠近反 射聚焦镜的电极为头部向圆板电极弯曲的针状电极。



Fig. 1 Experimental setup of the laser-induced air plasma channel

两电极之间,并联1个0.25μF高压电容,由高压电容充 电电源对该电容充电。实验中,采用 Vigo PVM-10.6 探 测激光脉冲波形, Thorlabs DET10A 光电探测器探测等 离子体发光, Tektronix P6015A 高压探头探测电容电压 和 Pearson 4418 型电流传感器探测放电电流,这些信号 用数字示波器 Agilent DSO-X 3024A 进行记录。在进行 等离子体发光的光谱分析时,采用 Princeton Instruments 的光谱仪 SP2750 和 ICCD 探测器 PI MAX 1300。

#### 2 实验结果与分析

图 2 中给出了用数字相机获得的激光诱导等离子体通道图样。图 2a 为无外加电场时的等离子体通道。 等离子体与右侧的圆板电极相连,但与左侧针状电极 尚有一段距离。图 2b 为有外加电场时的激光诱导放 电等离子体通道的图样。此时针状电极与圆板电极间 距为 7.4cm,两电极间击穿之前的高压为 20kV。在高 压电场的作用下,等离子体向针状电极发展,最后形成 了连通的放电等离子体通道。



Fig. 2 Laser induced plasma image

a-no electric field b-high voltage electric field between electrodes 以下报道对激光诱导放电等离子体通道的启动时 间特性、电气特性、光谱特性等方面的研究结果。

#### 2.1 激光诱导放电等离子体通道的启动时间特性

图 3 中给出了激光诱导放电等离子体通道实验研



Fig. 3 Waveform in the experiment of laser induced discharge plasma channel (channel 1—high voltage waveform; channel 2—current waveform; channel 3—laser pulse waveform; channel 4—plasma radiation waveform)

究中获得的放电高压波形(通道1)、电流波形(通道 2)、激光脉冲波形(通道3)及等离子体辐射波形(通 道4)的典型图样。进行对应的实验时,针状电极接 地,充电电源通过圆板电极对电极间并联的电容充电, 充电高压为-15kV。激光器触发放电4.3μs、激光脉 冲上升沿后2.3μs后,放电等离子体通道开始放电,圆 板电极端高压急剧下降,等离子体的发光急剧增强。

由于使用的 CO<sub>2</sub> 激光脉冲能量约为 50J,并且采 用了放电方向与激光束方向同轴的结构,放电等离子 体的启动时刻,仅比激光脉冲上升沿延后 2.3µs,显著 快于低激光脉冲能量时约 30µs 的延时<sup>[15]</sup>。

放电等离子体通道的启动时刻及其涨落与电极间



Fig. 4 Relationship between initiation delay of discharge plasma channel and electrode spacing with different discharge voltages

距、电容充电电压等因素相关。分别做了放电电压为 20kV,25kV,30kV和35kV下不同电极间距的放电实 验。由于 CO<sub>2</sub>激光能量的抖动约有600mJ,即不同束 激光脉冲所能传递给带电粒子的动能也不同,所以电 极间产生的初始带电粒子的初始浓度和初始速率也就 不同,产生了相同电极间距以及电压条件下放电等离 子体通道的启动时刻及其涨落与电极间距和放电电压 的关系。从图中可以看出,相同电容充电电压下,放电 等离子体通道的启动时刻及其涨落随着电极间距的增 加而增加,但是延迟最长仅为12μs 左右。

### 2.2 激光诱导放电等离子体通道的电气特性

图 5 是激光诱导放电的电流波形。为了了解放电 等离子体通道的电气特性,采用描述电容放电电流的 衰减振荡表达式对放电电流波形进行了拟合:

 $i = I_0 \exp[-(t - t_0)/\tau] \sin[\omega_0(t - t_0)]$  (1) 式中, $I_0$ 为 $t_0$ 时刻的电流值, $\omega_0$ 为电流振荡谐振频率,  $\tau$ 为衰减时间常数。 $\omega_0$ 和 $\tau$ 与放电回路及等离子体的 电气参量有关:

$$\omega_0 = \sqrt{1/(LC) - 1/\tau^2}$$
 (2)

$$\tau = 2L/R \tag{3}$$

式中,C为储能电容的电容值,L和R为包括等离子体 通道在内的放电回路电感和电阻值。



Fig. 5 Current waveform of laser-induced discharge

表1为拟合得到的电极电压、等离子体长度以及 激光能量对等离子体通道的影响数据。从表1中可以 看出,等离子体通道的电阻值随着电极电压增加略有 减小的趋势,但受等离子体通道长度的变化影响并不 是很明显。这一结果与JI等人的"等离子体通道的电 阻主要为等离子体柱与电极之间的过渡区电阻"的结 论<sup>[16]</sup>一致。表1中的数据显示,即使长度超过 100mm,等离子体通道的电阻也不到2Ω。这一电阻值 远小于 MONGIN 等人报道的飞秒激光诱导的等离子 体通道的电阻值。MONGIN 等人的报道显示<sup>[6]</sup>,采用 3.9μm 中红外激光,1030nm 和 800nm 近红外激光诱 导产生的长 160mm 的等离子体通道,电阻值分别为 834

http://www.jgjs.net.cn 技 光 术

1.0

0.8

0.6

激

| Table 1 | Experimental | data | of | laser | induced | discharge |
|---------|--------------|------|----|-------|---------|-----------|
|---------|--------------|------|----|-------|---------|-----------|

| voltage∕<br>kV | plasma<br>length∕mm | resistance/<br>Ω | resonant<br>frequency/MHz | fitting<br>coefficient |
|----------------|---------------------|------------------|---------------------------|------------------------|
| 20             | 54                  | 1.70             | 1.71                      | 0.999                  |
| 20             | 74                  | 1.75             | 1.69                      | 0.998                  |
| 20             | 86                  | 1.69             | 1.74                      | 0.994                  |
| 20             | 96                  | 1.73             | 1.71                      | 0.992                  |
| 25             | 74                  | 1.73             | 1.70                      | 0.999                  |
| 25             | 84                  | 1.70             | 1.69                      | 0.998                  |
| 30             | 94                  | 1.77             | 1.67                      | 0.997                  |
| 35             | 84                  | 1.67             | 1.73                      | 0.997                  |
| 35             | 86                  | 1.72             | 1.73                      | 0.998                  |
| 35             | 94                  | 1.76             | 1.67                      | 0.995                  |
| 35             | 104                 | 1.71             | 1.70                      | 0.996                  |
| 35             | 106                 | 1.73             | 1.71                      | 0.993                  |

700G $\Omega$ ,190G $\Omega$ ,150G $\Omega$ 。因此,对能量传输应用,高能 脉冲 CO, 激光束诱导产生的等离子体通道具有明显 的优势。

## 2.3 激光诱导放电等离子体通道的光谱特性及等离 子体密度

高功率激光击穿空气产生等离子体,等离子体中的 粒子同时会向外发射出辐射,通过对等离子体的发射光 谱进行分析处理可以得到等离子体中的电子密度。

目前,在计算激光诱导等离子体电子密度的众多 方法中,Stark 展宽法应用最为广泛。在高密度的等离 子体中,由于辐射粒子会非常频繁地受到周围粒子的 作用而使压力展宽远大于由自然展宽和多普勒展宽引 起的谱线展宽。在这其中,辐射粒子主要是受到了周 围大量电子的相互碰撞,因此可以只考虑由电子碰撞 引起的 Stark 展宽, 而忽略其它的展宽。

在实验中,作者利用 Princeton Instruments 的光谱 仪 SP2750 和 ICCD 探测器 PI MAX 1300 来记录等离 子体通道中 343.715nm 处的 1 价氮离子和 399.5nm 处的1价氧离子谱线,利用这两条谱线的 Stark 展宽来 计算出电子密度。

图 6 为 343.715 nm 处的 1 价氮离子的谱线图。图 7为399.5nm处的1价氧离子的谱线图。从图6和



Fig. 6 Broadening of N<sup>+</sup> linear spectrum at 343.715nm





Fig. 7 Broadening of O + spectrum at 399.5nm

图 7 中可以看出.343.715nm 处的 1 价氮离子和 399.5nm 处的1价氧离子的谱线在等离子体的演化过程中,中 心波长会逐渐向短波方向移动,回归微弱电离等离子 体的谱线位置。这个过程被称为二次 Stark 频移,并且 在这个过程中谱线的展宽也在逐渐变小。

由于在仅考虑二次 Stark 效应的情况下,辐射谱线 的线型为洛伦兹线型函数,因此可以利用洛伦兹函数 对实验谱线进行拟合得到谱线的半峰全宽。图8中给 出了对时刻 3.5µs 和时刻 6.75µs 的氮离子光谱的拟 合结果, 拟合结果的 R<sup>2</sup> 分别达到 0.964 和 0.741。



Fig. 8 Full width at half maximum (FWHM) of spectral line by Lorenz curve fitting

a-at 3.5 µs b-at 6.75 µs

利用 Stark 展宽可以计算得到等离子体中电子密 度,GRIEM 给出了一个计算电子密度的经验公式<sup>[17]</sup>:  $\gamma(\lambda) = 0.2 \times$ 

$$\left[1 + 1.75\alpha \left(\frac{n_e}{10^{16}}\right)^{1/4} (1 - 0.75r)\right] \omega \left(\frac{n_e}{10^{16}}\right) \quad (4)$$

式中,n。是电子密度;γ为测量得到的谱线展宽,单位 为  $nm;\alpha$  为离子碰撞得到的谱线展宽参量; $\omega$  为电子 碰撞引起的谱线展宽参量;r为德拜半径,单位为 nm。 第41卷 第6期

图9为处理得到的等离子体中电子密度随时间的 变化关系图。从氮离子(见图9a)和氧离子(见图9b) 计算获得的电子密度基本相当,说明这种等离子体密 度(电子密度)计算方法有较高的可靠性。图9显示 了电子密度在10<sup>19</sup> cm<sup>-3</sup>的量级,而飞秒激光等离子体 通道的电子密度在10<sup>17</sup> cm<sup>-3</sup>量级<sup>[18]</sup>。尽管图3和图 6、图7中的等离子体辐射总功率和光谱分辨的功率均 在放电前后有明显变化,但等离子体密度基本上单调 减少,这说明在脉冲激光束引发空气击穿的瞬间,等离 子体密度最高,随后等离子体进入膨胀过程,即使强放 电开始后,放电电流的磁压力也没能阻止等离子体的 膨胀。



 $a-N^+$  spectrum broadening  $b-O^+$  spectrum broadening

#### 3 结 论

在实验上研究了 TEA CO<sub>2</sub> 通过离轴抛物面反射 镜聚焦后,击穿空气形成等离子体通道。激光诱导等 离子体通道的电阻随着电极两端电压的增加有降低的 趋势,而等离子体通道长度对电阻的影响不明显。且 100mm 长的等离子体通道的电阻值不到 2Ω,远小于 同等长度的飞秒激光等离子体通道的阻抗值。此外, 利用光谱仪对等离子体通道的发射光谱进行了观测, 从发射光谱的 Stark 展宽获得了等离子体通道的等离 子体密度参量。

目前,实验室正准备从完善激光束汇聚光学系统和提高脉冲激光能量两个方面入手,获得更长的激光

#### 参考文献

- SHIMADA Y, UCHIDA S, YASUDA H, et al. Laser-triggered lightning[J]. Proceedings of the SPIE, 1998, 3423: 181-185.
- [2] SHINDO T, AIHARA Y, MIKI M, et al. Model experiments of lasertriggered lightning[J]. IEEE Transactions on Power Deliver, 1993, 8 (1):311-317.
- [3] APOLLONOV V V. Conductive channel for energy transmission [J]. American Institute of Physics Conference Proceedings, 2011, 1402 (1): 437-433.
- [4] FORESTIER B, HOUARD A, REVEL I, et al. Triggering, guiding and deviation of long air spark discharges with femtosecond laser filament [J]. American Institute of Physics Advances, 2011, 2 (1): 943-948.
- [5] SCHMITT-SODY A, FRENCH D, WHITE W, et al. The importance of corona generation and leader formation during laser filament guided discharges in air[J]. Applied Physics Letters, 2015, 106(12): 1-2.
- [6] MONGIN D, SHUMAKOVA V, ALIŠAUSKAS S, et al. Conductivity and discharge guiding properties of mid-IR laser filaments [J]. Applied Physics, 2016, B122(10): 267-273.
- [7] IONIN A A, SELEZNEV L V, SUNCHUGASHEVA E S. Formation of plasma channels in air under filamentation of focused ultrashort laser pulses[J]. Laser Physics, 2015, 25(3): 033001.
- [8] CHEN D Zh, GAO J B, YE J F, et al. Experiment study of air ionization and plasma channel conducting with nanosecond ultraviolet laser pulses [J]. Laser Technology, 2008, 32(3):262-264(in Chinese).
- [9] LIU X, LU X, ZHANG Z, et al. Triggering of high voltage discharge by femtosecond laser filaments on different wavelengths [J]. Optics Communications, 2011, 284(22): 5372-5375.
- [10] SHU X F, YU C X, LI W, et al. Kinetic-energy structure of a laserproduced-plasma channel in air[J]. Physical Review, 2015, A92 (6):063844.
- [11] APOLLONOV V V. Energy transmission by laser[J]. Proceedings of the SPIE, 2015, 9255; 92554K.
- [12] ZUO D L, CHENG Z H, LU H, et al. Studies on high energy pulsed CO<sub>2</sub> laser [J]. Proceedings of the SPIE, 2008, 7276: 72761D.
- [13] TANG J, ZUO D, JIU Z, et al. Spectral property investigation of air plasma generated by pulsed CO<sub>2</sub> laser [J]. IEEE Transactions on Plasma Science, 2011, 39(4): 1114-1119.
- [14] LAN H, WANG X B, ZUO D L. Time-resolved optical emission spectroscopy diagnosis of CO<sub>2</sub>laser-produced SnO<sub>2</sub> plasma[J]. Plasma Science and Technology, 2016, 18(9): 902-906.
- [15] DENG X F, WANG X B, ZUO D L. Character study on CO<sub>2</sub> laserinduced air discharge[J]. Laser Technology, 2017, 4(1):61-64(in Chinese).
- [16] JI Zh G, GE X Ch, WANG W Y, et al. Character study on the plasma channels produced by ultrashort laser pulses [EB/OL]. (2010-09-25) [2017-01-11]. http://wenku.baidu.com/link? url = VfYXbQ2ilPLGftJdqSjYrDBOWgO6ChNGON3UzsFIBA4Skh0yH-S2CxheC1YYM9mH6aTWjKUPNQwyhLAAXHUnHOBa31uYVoE2tisCigio9oq(in Chinese).
- [17] GRIEM H R. Plasma spectroscopy[M]. New York, USA: McGraw-Hill Book Company, 1964: 88-91.
- [18] WANG H T, FAN Ch Y, SHEN H, et al. Temporal evolution of plasma density in femtosecond light filaments[J]. High Power Laser and Particle Beams, 2012, 24(5):1024-1028(in Chinese).