文章编号: 1001-3806(2016)06-0810-04

激光靶海量通道信号模块化并行采集系统设计

何凯平¹,徐 达¹*,熊 伟²,李 华¹

(1.装甲兵工程学院 兵器工程系,北京 100072; 2.中国人民解放军 驻 617 厂军事代表室,包头 014000)

摘要:为了解决测试弹幕武器弹着点激光靶信号通道过多的难题,提出了模块化的系统组成以及基于现场可编程 门阵列加中央处理器的并行数据采集方案,分析了被测弹丸飞行参量及数据采集和存储速度要求,给出了平行阵列激光 靶的坐标定位原理,设计了结构简单、可靠性高的光电检测电路,推导了电路灵敏度调整方法,并进行了数据采集实验验 证。结果表明,该系统易安装调试、工作可靠性高,采集和存储速度满足弹幕武器密集度测试需要。

关键词:测量与计量;并行信号采集;现场可编程门阵列+中央处理器;光电检测电路;激光光幕靶 中图分类号:TN247;TJ012.3 文献标志码:A doi:10.7510/jgjs.issn.1001-3806.2016.06.008

Design of modularized parallel signal acquisition systems with massive channels for laser screen targets

HE Kaiping¹, XU Da¹, XIONG Wei², LI Hua¹

(1. Department of Arms Engineering, Academy of Armored Force Engineering, Beijing 100072, China; 2. Military Representative Office of 617 Plants, People's Liberation Army of China, Baotou 014000, China)

Abstract: In order to resolve the difficulty of massive laser target signal channels during testing barrage weapons dispersion, a modularized system connected with parallel data acquisition scheme based on field-programmable gate array (FPGA) and central processing unit was presented. Trajectory parameter, data acquisition speed and storing velocity of the measured projectile were analyzed. Coordinate measuring principle of parallel line laser detector array was given and photoelectric detection circuit with brief and high reliability was designed. Adjustment method of circuit sensitivity was derived and data acquisition was verified by experiment. The results show that this acquisition system is easy to install and debug, and has high functionality reliability. Acquisition speed and storing velocity can meet the demand of barrage weapons dispersion measurement.

Key words: measurement and metrology; parallel signal acquisition; field-programmable gate array + central processing unit; photoelectric detection circuit; laser screen target

引 言

随着导弹突防能力的不断提高,用于导弹防御的 弹幕武器射频越来越高。弹幕武器具有弹丸速度快、 弹丸间隔时间短、散布大的特点^[1]。基于光电接收阵 列检测的激光靶弹幕武器密集度测试方法,具有测量 精度高、靶面面积大、易扩展的特点。由于弹丸速度 快、弹丸间隔时间很短,对应的过靶信号持续时间和前 后信号间隔时间短,组建高精度大靶面需要数量巨大 的光控开关信号通道^[24]。串行扫描通道信号的采集 方法可以通过较少的采集电路数量实现大量通道的采 集,但测试系统通道数量过多且弹丸过靶信号持续时

作者简介:何凯平(1989-),男,博士研究生,主要从事兵 器光电测试技术的研究。

* 通讯联系人。E-mail:zxyxd@ sina.com 收稿日期:2015-11-02;收到修改稿日期:2016-01-08 间短,串行扫描方法扫描速度不能满足时间要求,难以 在信号持续时间内完成对海量通道信号的扫描,不能 实现对高精度大靶面激光靶海量通道信号的采集。采 用并行的信号采集方式时,由于通道数量多,加上数量 众多的外围电路,大大增加了系统的复杂度,导致系统 工作可靠性低,难以实现高精度大靶面的测量^[59]。

本文中结合线激光平行阵列激光靶坐标测量原 理,提出了一种基于现场可编程门阵列(field-programmable gate array, FPGA)加中央处理器(central processing unit, CPU)的模块化结构光控开关阵列数据采 集方法,采用整体系统组成方案及单个模块信号采集 方案,设计了光电检测电路。并结合原理样机,进行了 模拟弹丸过靶信号采集试验,验证该方法的可行性。

1 平行阵列激光靶坐标测量原理

如图1所示,线激光器1与光电检测器件阵列1、 线激光器2与阵列2分别组成两个大面积三角光幕光

基金项目:军队科研计划资助项目

Fig. 1 Framework of parallel detector array

控开关阵列,其中线激光器是由激光器通过光学整形 系统形成线光束。两光电检测器件阵列相互平行且垂 直于地面,中间的光幕重叠区域即为有效靶面区域,将 有效靶面中最大的正方形区域定为规则靶面区域。采 用光电检测器件阵列的光接收方案,每个光电检测器 件构成一个检测通道,激光靶的通道检测精度取决于 光电检测器件排列密度。

测量原理如图 2 所示。序号为 1 的弹丸穿过两平 行光电检测器件阵列时,会在两光电检测阵列上产生 两个遮挡区域。采集模块采集到被遮挡区域的通道 (channel,CH)区域分别为 Δm 和 Δn ,通过通道编码, 可以求出 Δm 和 Δn 遮挡区域在光电检测阵列上的几 何位置。结合对应几何结构的坐标求解算法即可求得 弹丸 1 的过靶坐标(x,y)。

从坐标测量原理可以看出,要保证较高的过靶坐标检测精度,光电检测器件阵列须具备足够的分辨率, 以一个光电二极管宽度为1.6mm 计算,组成两个10m 长的检测阵列需要12500 路通道,而且被测对象的不同,所需要的靶面大小也不同,必须考虑系统的工作稳 定性与靶面面积易扩展性。

2 光控开关阵列信号采集系统设计

2.1 总体设计

如图 3 所示。系统主要由电源、控制器(control unit,CU)、光控开关阵列信号采集模块、计算机和控制 软件组成。多个阵列通过网络交换机扩展,交换机与 计算机之间同时支持以太网、光纤以及无线 3 种通信 方式。每个阵列回路由 1 个电源、控制模块和最多 12 个光控开关阵列信号采集模块组成,每个采集模块由 10 块光电检测器件拼接,每个光电检测器件有 50 个 通道,共 500 个通道。因此,一个阵列回路最多可控制

6000 路通道信号的采集。每个电源/控制模块有两路 输出,每路输出分别控制6个采集模块。通过计算机 以太网、光纤或者无线方式控制多个子阵列串联工作, 最大通讯扩展距离为15m。根据采集现场的情况,可 以选择通过以太网、光纤或无线实时进行现场实时通 信^[10]。

2.2 采集模块设计

典型弹丸过靶时间参量如表1所示。最短过靶时 间为27.7μs,说明信号采集系统最短需在27.7μs内 完成对弹丸过靶信号的采集。考虑到确保测试结果的 可靠性,每发弹丸过靶时进行3次采样,则所需采集电 路的最低信号采集频率要大于110kHz。前后弹丸时 间间隔为600μs,表明系统需在600μs内完成对一发 弹丸过靶信号的处理并存储,以保证能够对前后两发 弹丸的信号进行区分。

Table 1 Parameters for shell through the target

parameter	value			
speed	1000m/s~1800m/s			
rate	100 thousands/min			
projectile	50mm			
interval	600µs			
distance	1.08m			
duration	27μs ~50μs			

如图 4 所示,采集模块分为采集单元和控制单元两 部分,主要由硅光电池组、比较电路、整形电路、FPGA 逻 辑电路和 CPU 等组成。通过给硅光电池施加参考电 压 V_{ref},使其在线激光照射下保持导通状态,当弹丸过 靶,产生电压的跳变,经过比较和整形电路后由 FPGA 进行采集。FPGA 采用通过名称的连接模块实例端口 方法,使其在数据端口很多的大型模块中更不容易出 错^[11-15]。FPGA 逻辑电路负责对前级电路中的信号进 行读取和判别,计算出相应通道值,然后将数据给 CPU 进行存储,CPU 可以通过 RS485 直接与上位机通 信,也可将信号存储到 SD 卡上,事后再进行读取。单 个采集模块独立进行信号采集与存储,并通过 CPU 实 版权所有 © 《激光技术》编辑部

Fig. 4 Hardware structure of acquisition module

现模块与模块之间的通信与级联。通过同步动态随机 存取记忆体(synchronous dynamic random access memory, SDRAM)可以扩大 FPGA 的处理速度与能力,用 FPGA 的嵌入式内核与中央存储器(central unit memory, CUM)作为采集控制器,可实现系统数字电路部分 的集成,大大简化电路,提高系统工作可靠性。

2.3 光电检测电路设计

由于解调电路较复杂易导致采集系统故障,不考 虑采用激光调制的方法来降低太阳光的干扰^[3]。如 图 5 所示, $P_{\rm th}$ 表示光电接收器件的光功率响应阈值,P和 $P_{\rm s}$ 表示激光功率和太阳光功率,经过滤波后激光功 率 $P_{\rm f}$ 衰减较少,而滤波后的太阳光功率 $P_{\rm s,f}$ 衰减较大, 而衰减片对二者的衰减量很接近。使得通过滤光和衰 减双重处理后,到达光电接收阵列的太阳光功率 $P_{\rm s,f,a}$ 已经低于接收器件的响应阈值,而线激光器的激光功 率 $P_{\rm f,a}$ 仍然保持在阈值以上,实现了抗饱和干扰的目 的。

由于窄带滤光片价格昂贵,激光靶面积大需要数 量多,成本过高。通过加装衰减片可以降低对滤光片 带宽性能的要求,大大降低了使用成本。

光电检测电路原理如图 6 所示。当无弹丸穿过光 幕时,激光持续照射光电接收器件 D_1 ,使其保持导通 状态, D_1 和电阻 R_x 的电压恒定为 U_1 ,具体电压大小通 过调节 R_x 来实现。电容 C_1 两侧短路,比较器的输出 电压值不变。当弹丸穿过光幕时,入射激光被遮挡,通 过加装光阑、滤光片和衰减片,减弱背景光,使得遮挡 区域的光电检测器件感应电流很微弱。 D_1 和 R_x 之间 的电压跳变,由高电平变为低电平。跳变电压可以通 过电容 C_1 ,与比较器负输入 J_2 进行叠加,由于跳变电 压为负脉冲,因此, J_2 上的电压小于正输入上的电压

Fig. 6 Diagram of photoelectric detection circuit 值 J_{*} ,使得输出电压 U_{out} 为高电平,R 为反馈电阻。

当所处的环境光强不同、测量靶面面积不同以及 不同被测弹丸,所需光电检测电路的灵敏度都不一样, 因此需要确定加载到比较器负端上的基准电压值。在 无弹丸过靶时,电容 C_1 左端的电压稳定,电容断开。 设电容 C_1 左端的电压为 $U_1(0_-)$,右端的电压为 $U_r(0_-),则电容电压 U_c(0_-)为:$

$$U_{c}(0_{-}) = U_{r}(0_{-}) - U_{1}(0_{-})$$
(1)

弹丸过靶时,由于激光被遮挡,设U₋为比较器负 端电压值,由戴维宁定律可以得出,当t≥0时,

$$U_c + C \frac{\mathrm{d}U_c}{\mathrm{d}t} (R_x + R_3) = U_- \qquad (2)$$

$$U_{c}(0_{+}) = U_{c}(0_{-}) = U_{r}(0_{-}) - U_{1}(0_{-})$$
(3)
代人时间常数 τ .即可得.

$$U_c = U_- + \left[U_r(0_-) - U_1(0_-) - U_- \right] \exp\left(-\frac{t}{\tau}\right) = U_c(\infty) + \left[U_c(0_+) - U_c(\infty) \right] \exp\left(-\frac{t}{\tau}\right)$$
(4)

式中, $\tau = (R_x + R_3)C$,基准电压 $J_+ = J_-$ 通过分压电路 从电源引入。因此,可以通过调节电阻 R_x 来控制光电 检测电路的灵敏度,以适应不同的背景光、激光器功率 以及激光靶的靶面面积。

3 信号采集实验

通过测试系统原理样机模拟弹丸过靶的通道信号 采集。样机共128个通道,FPGA的采样速率为 110kHz,信号存储的传输速率为12MHz。实验在室外太 阳光照条件下进行,进行了长时间多次反复采集,系统 长时间工作稳定。图7为一次实验采集的信号波形。 表2为对应的部分通道输出信号。从表2中可以看出, 弹丸过靶时遮挡的光幕区域为通道99~通道115。

Fig. 7 Graph of signal waveform

Table 2 Output value of channel signal of acquisition module(hexadecimal)

channel	Ch97	Ch98	Ch99	Ch100	Ch101
output	14E3	1628	FFFF	FFFF	E74D
channel	Ch102	Ch103	Ch104	Ch105	Ch106
output	D9BE	DC6A	D80C	D317	DEDA
channel	Ch107	Ch108	Ch109	Ch110	Ch111
output	DE06	DBB8	DEC1	E298	E388
channel	Ch112	Ch113	Ch114	Ch115	Ch116
output	EA64	F3DB	FB5F	FFFF	5598

4 结 论

稳定的信号采集系统是构建高精度大靶面激光 靶、实现弹幕武器密集度测量的重要环节。采用了滤 光片加衰减片的方法消除环境光的干扰,设计了可靠 性高、结构简单、灵敏度可调的光电检测电路,简化了 逻辑电路。该信号采集系统具有能够采集大量通道、 安装组合模块化、可靠性高的特点。

参考文献

- JI X Y, YUAN Y X, ZHANG X B, et al. Design and investigation of hyper firing-rata gun[J]. Acta Armamentarii, 2007, 28(8): 1021-1024(in Chinese).
- [2] HE K P, XU D, LI H. High precision measurement for barrage weapon dispersion based on large area triangle composite light-screens[J]. Optics & Precision Engineering, 2015, 23(6): 1523-1529(in Chinese).
- [3] ZHANG Z Q, XU D, LUO J H, et al. A new design used in large area laser screen for gun of high firing frequency [J]. Optical Technique, 2009, 35(3): 464-466(in Chinese).
- [4] QIU W J, JIANG S P, HAO X J. Design and realization of a laser screen coordinate measurement system[J]. Laser Technology, 2012,

36(6): 735-737(in Chinese).

- [5] TIAN H, JIAO M X, NI J P, et al. Divided screen array measurement method of projectile-curtain parameter for multibarrel volleyed weapons[J]. Infrared and Laser Engineering, 2013, 42(2): 507-512(in Chinese).
- [6] DONG T, NI J P, MA Q, et al. Design of 10m × 10m large sensor area laser target[J]. Optical Technique, 2010, 36(3): 368-371 (in Chinese).
- [7] JIANG Y Z, WU M M, SUN T, et al. Design and realization of data collection system of ship pipe system simulator based on C8051F060 MCU[J]. Infrared and Laser Engineering, 2013, 42(1): 274-278 (in Chinese).
- [8] ZHANG Z Q, LIU C Z, XU D, et al. Design of laser screen based on multi-MCU for small bore artillery [J]. Journal of Academy of Armored Force Engineering, 2010, 24(5): 48-52(in Chinese).
- [9] LIANG J H, ZHAO D E, DONG J. Design and improvement of photoelectric target[J]. Laser Technology, 2008, 32(5): 456-459(in Chinese).
- [10] LI Y, TANG X Y, GE J, et al. Real-time multi-channels infrared image acquisition system based on FPGA [J]. Infrared and Laser Engineering, 2012, 41(5): 1363-1368 (in Chinese).
- [11] STAVINOV E. 100 power tips for FPGA designers [M]. San Jose, California, USA: Evgeni Stavinov, 2013: 179-180.
- [12] HUANG T C, GONG H, SHAO B B. Multifunctional data acquisition system based on USB and FPGA [J]. Atomic Energy Science and Technology, 2013, 47(11): 2172-2175 (in Chinese).
- [13] JIAN X Z, ZHANG H, FAN J P, et al. Research of computer-generated hologram based on FPGA technology[J]. Laser Technology, 2012, 36(1): 26-28(in Chinese).
- [14] YANG H G, SUN J B, WANG W. An overview to FPGA device design technologies[J]. Journal of Electronics & Information Technology, 2010, 32(3): 714-726(in Chinese).
- [15] ACTEL. Actel corporation 2061 stierlin court mountain view, CA 94043-4655 USA. 40MX and 42MX FPGA families [M]. Sunnyvale, California, USA: Actel Corporation, 2009:4.