文章编号: 1001-3806(2015)04-0446-04

第39卷 第4期

2015年7月

基于结构光投影的薄膜振动模式分析

冯 伟,张启灿*

(四川大学 电子信息学院 光电系,成都 610064)

摘要:为了验证薄膜振动模式的有效性,采用正弦条纹投影和傅里叶条纹分析的方法进行薄膜振动模式分析 和振幅重建,并进行了理论分析和实验研究。在基于结构光的主动3维传感技术中,傅里叶变换轮廓术具有单帧 获取、高分辨率、全场可实时测量等优势,成为可测量动态3维面形的一种实用方法。正弦光栅条纹被投影到振动 中的薄膜表面,采用低帧频的 CCD 相机采集由薄膜振动导致条纹局部模糊的一系列变形条纹图。通过傅里叶变换 轮廓术方法进行处理,最终得到不同频率下实际测量的薄膜振动模式结果。给出了理论计算结果与实测结果的验 证比较。结果表明,该方法测量的振动模式结果准确反映了薄膜振动情况。3维面形测量结果和实验验证了该方 法的可行性。

关键词:信息光学;振动测量;振动模式分析;结构光投影;傅里叶频谱 中图分类号:0438 文献标志码:A doi:10.7510/jgjs.issn.1001-3806.2015.04.003

Analysis of membrane vibration modes based on structured light projection

FENG Wei, ZHANG Qican

(Department of Opto-electronics, College of Electronis and Information Engineering, Sichuan University, Chengdu 641004, China)

Abstract: In order to verify membrane vibration modes, sinusoidal fringe projecting and Fourier fringe analysis were used in membrane vibration mode analysis and amplitude reconstruction. After theoretical analysis and experimental verification, among 3-D automatic sensor technologies based on structured light, Fourier transform profilometry (FTP) with the advantages of single-frame capture, high resolution and real-time measurement became the practical method in dynamic three-dimensional shape measurement. A sequence of the deformed and partly blurred sinusoidal fringe images on the surface of a vibrating membrane was grabbed by a low sampling rate CCD camera. By FTP, the actual experimental results of membrane vibration modes at different frequencies were obtained. The theoretical vibration results and the vibration measurement results were compared. The results show that the vibration modes reflect the vibrating membrane accurately. The results of 3-D surface shape measurement and actual experiments give the verification of its validity.

Key words: information optics; vibration measurement; vibration mode analysis; structured light projection; Fourier spectrum

引 言

薄膜是工业生产和自然生活中普遍应用的一类弹 性元件,对薄膜振动测量的研究一直以来都受到人们 的广泛关注和重视。常见的振动测量方法主要有散斑 法、图像处理法、结构光3维传感法等,不同的测量方 法都有各自的优势和应用范围。

散斑法振动测量又分为电子散斑干涉测振^[1]、数 字散斑干涉测振^[2]、相移数字散斑干涉测振^[3]、双精 度数字散斑干涉测振^[4]等。1971年由 BUTTERS 和 LEENDERTZ 提出的电子散斑干涉测振技术^[5],具有

作者简介:冯 伟(1991-),男,硕士研究生,主要从事光 学3维传感方面的研究。

* 通讯联系人。E-mail:zqc@ scu. edu. cm

收稿日期:2014-07-21;收到修改稿日期:2014-08-21

全场、非接触、实时测量等优点。

WANG 等人利用数字图像处理和傅里叶变换的 方法^[6],对一幅高频振动模糊图像经过一系列的变换 和处理得到对应的振幅和振动方向信息,可以实现平 面内任意方向振动的测量,振幅的测量精度可以达到 亚像素级,很适合微小振动的测量。

基于结构光3 维传感的光学测量方法,以其全场、 快速、非接触、装置简单等优点,已经得到了广泛的应 用。其中 ZHANG^[78]等人利用结构光3 维传感技术, 采用高帧频 CCD 拍摄在外力作用下的鼓膜振动,得到 整个鼓膜表面在振动过程中不同时刻的3 维面形,再 现了振动过程中的模式变换,同时得到了鼓膜振动的 频率和振幅等一些特征参量,但是此类高帧频 CCD 价 格昂贵。

作者在 ZHAI^[9]等人的研究基础上,结合结构光3

维传感技术和时间平均法^[10-11]的诸多优点,利用结构 光投影和傅里叶条纹分析方法^[12]来重建薄膜振动模 式。同时使用高帧频 CCD 对振动中的薄膜 3 维面形 进行了测量重建,印证了振动模式的正确性。此外,本 文中还将实验检测得到的振动模式与理论计算对应结 果做了比较,证实了所提出方法的有效性。

1 条纹投影时间平均法原理

1.1 测量系统

振动物体测量的光路如图 1 所示,虚线表示薄膜 表面的振动情况。其中, E_1 和 E_2 分别为投影系统的 入瞳和出瞳, E_3 和 E_4 为成像系统的入瞳和出瞳,L表 示成像系统入瞳 E_3 到参考平面的距离,d表示投影系 统出瞳 E_2 和成像系统入瞳 E_3 之间的距离。

1.2 原理分析

投影正弦条纹到振动薄膜上,在 CCD 的曝光时间 *T*内,受到正弦激励时薄膜表面变形条纹的平均光强 为: g(x,y,T) = a(x,y) + b(x,y) ·

 $\cos\left[2\pi f_0 x + \varphi_0(x,y)\right] \cdot \mathbf{J}_0\left[2A(x,y)\pi/\lambda\right]$ (1)

式中,a(x,y),b(x,y)分别为薄膜振动状态下的背景 光场和非均匀反射率分布, f_0 是正弦调制光栅的空间 载频, $\lambda = 1/(f_0 \tan \theta)$ 为等效波长, $\varphi_0(x,y)$ 为薄膜静止 状态时表面的相位分布,A(x,y)为振幅, J_0 为0阶 Bessel 函数。对(1)式中变形条纹 $\overline{g}(x,y,T)$ 做傅里叶 变换,可以得到条纹对应的傅里叶频谱,选择合适的滤 波窗进行滤波,进行频谱移中后,做逆傅里叶变换可以 求得对应的复分布为:

$$\hat{g}(x,y) = [b(x,y)/2] \cdot J_0[2A(x,y)\pi/\lambda] \times \exp\{i[2\pi f_0 x + \varphi_0(x,y)]\}$$
(2)

在薄膜振动幅度很小的情况下,薄膜表面的非均 匀反射率 b(x,y)是不变的。以同样的步骤处理参考 条纹,得到对应的复分布为:

$$\hat{g}_{ref}(x,y) = \frac{b(x,y)}{2} \exp\{i[2\pi f_0 x + \varphi_0(x,y)]\} (3)$$

对(2)、(3)两式取模后相除,得出振动薄膜表面 强度比值分布为:

$$I(x,y) = \frac{|\hat{g}(x,y)|}{|\hat{g}_{ref}(x,y)|} = \left| J_0\left(\frac{2A(x,y)\pi}{\lambda}\right) \right| \quad (4)$$

本文中通过计算机模拟和实际实验来分析强度比 值分布 *I*(*x*,*y*)的变化趋势和相对应的3维面形结果。

2 计算机模拟

模拟受正弦激励的圆形薄膜,同时投影每个周期 为12个像素的正弦条纹,CCD 帧频设为25frames/s。 理想情况下,圆膜的振动方程可以表示为:

 $u_{mn}(r,\theta,t) = J_n(Z_{mn}r/c)\cos(n\theta)\cos(Z_{mn}kt/c)$ (5) 式中, $u_{mn}(r,\theta,t)$ 是t时刻振动薄膜的位移,此时把薄 膜的表面强度比值分布表示为(m,n)模式。c是圆形 薄膜的半径, $k = \sqrt{F/\sigma}$,其中F为薄膜的表面张力, σ 为薄膜的面密度, Z_{mn} 是n阶 Bessel函数 $J_n(x) = 0$ 的 第m个正根。与该模式相对应的振动频率为:

$$f_{(m,n)} = Z_{mn} \cdot k/(2\pi c) \tag{6}$$

图 2a 和图 2b 分别是(0,1)模式和(1,1)模式由 CCD 拍摄的振动薄膜的变形条纹图和对应的表面强 度比值分布图(即振动模式图)。

Fig. 2 Results of computer simulation at (0,1) mode and (1,1) mode $a-(0,1) \mbox{ mode } b-(1,1) \mbox{ mode }$

3 实验结果

本文中通过实际测量薄膜的振动模式和3维面形 结果来验证方法的有效性,实验装置如图3所示。

在半径为100mm的圆形低音喇叭,覆盖上一张绷紧的气球薄膜,选定条纹周期为12个像素的正弦条纹进行投影,通过信号发生器输出正弦激励信号,驱动喇叭振动,这里近似认为薄膜振动的频率和信号发生器激励的频率等同于薄膜振动的频率。采集装置为帧频25frames/s的Baumer系列CCD相机。

光技术

激

Fig. 3 Experimental setup

通过信号发生器改变薄膜受迫振动的频率,可以 得到相应的振动模式。图 4a~图 4e 是 5 种不同激励 频率下,CCD 相机拍摄到的薄膜振动变形条纹图和对 应的振动模式图。与该模式相对应的振动频率 f_(m,n) 是信号发生器激励的正弦信号频率。

Fig. 4 Deformed fringe images and reconstructed vibration modes at different frequencies

$$\begin{split} \mathbf{a} & \longrightarrow f_{(0,1)} = 43.1\,\mathrm{Hz} \quad \mathbf{b} \longrightarrow f_{(1,1)} = 68.8\,\mathrm{Hz} \quad \mathbf{c} \longrightarrow f_{(2,1)} = 92.2\,\mathrm{Hz} \\ \mathbf{d} \longrightarrow f_{(0,2)} = 99.1\,\mathrm{Hz} \quad \mathbf{e} \longrightarrow f_{(1,2)} = 125.9\,\mathrm{Hz} \end{split}$$

为了进一步验证该方法的可行性,本文中选用帧 频为1000frames/s的Basler A504K高速相机作为成像 设备,对不同振动模式下的薄膜振动变形条纹进行采 集。采用动态傅里叶变换轮廓术对采集到的变形条纹 数据进行处理,过程如下:(1)从原始条纹图中提取有 效数据区域;(2)对得到的条纹图进行傅里叶变换得 到其频谱;(3)选用合适的滤波窗对频谱进行滤波,滤 出相应的基频;(4)对滤出的基频进行频谱移中后作 逆傅里叶变换,得到截断相位;(5)对截断相位进行展 开,得到任意采样时刻薄膜振动的3维面形信息。 选取(0,1)模式和(1,1)模式进行分析,其中图5a

Fig. 5 Restructed 3-D shape of vibrating membrane at (0,1) mode and (1,1) mode a-(0,1) mode b-(1,1) mode

a-(0,1) mode b-(1,1) mode

和图 5b 分别是(0,1)模式和(1,1)模式的其中一个时刻的 3 维动态面形。图 6a 和图 6b 是在相应振动频率下,不同采样时刻薄膜面形中间行的振动情况,数字 1 到 6 表示 6 个不同采样时刻的面形振动情况,可以看出其振动变化规律基本吻合(0,1)模式和(1,1)模式,其中图 6a 和图 6b 中的第 6 个时刻对应图 5a 和图 5b 中的 3 维面形结果,可以看出,使用低频 CCD 计算得到的振动模式基本反应了薄膜振动的变化。

根据(5)式、(6)式和给定的测量系统参量、圆形 薄膜参量,通过计算机模拟计算得到各种振动模式下, 对应的薄膜振动的频率,如表1所示。

Table 1 Comparison of theoretical vibrating frequencies and practical results at different vibration modes

vibration mode	(0,1)	(1,1)	(2,1)	(0,2)	(1,2)	(0,3)
theoretical frequency/Hz	43.1	68.8	92.2	99.1	125.9	155.3
ratio of theoretical frequencies	1	1.596	2.139	2.299	2.921	3.603
practical frequency/Hz	43.6	68.8	102.8	114.7	154.3	203.5
ratio of practical frequencies	1	1.578	2.357	2.631	3.539	4.667

同时表1中还给出了实验中得到的不同振动模式 下薄膜做受迫振动激励信号的频率和理论模拟频率与 实际测量频率值的比值。分析表中的数据可以看到, 实际实验中得到各个振动模式对应的频率和模拟实验 得到的结果存在一定的误差。误差产生的主要原因是 薄膜振动的频率和信号发生器激励的频率并不完全相 同,而且气球薄膜在绷紧的过程中,表面的张力和自身 的厚度都是不均匀的,影响了本文中的实验结果,但二 者吻合一致的模式-频率关系验证说明了本文中方法 的有效性。

图 7 显示了薄膜在不同的振动频率下,按照理论 计算得到的振动模式和实际实验测得振动模式的比

Fig. 7 Comparison of theoretical vibration modes and practical vibration modes at different frequency excitation signals

较。通过图6、图7可以看出,利用第3节中提到的方 法可以使用低帧频的 CCD 快速获取薄膜振动模式,更 加有效地分析薄膜的振动情况。

4 结 论

利用结构光投影技术和傅里叶条纹分析方法,对 薄膜振动模式进行了理论分析,对比了振动模式的计 算机模拟结果和实际测量结果。此外,在使用低帧频 CCD 测量薄膜振动模式的同时,通过高速 CCD 得到相 同频率下薄膜振动的动态3 维面形测量结果,印证了 薄膜振动模式的可行性。与传统的薄膜振动测量方法 相比较,该方法具有速度快、成本低、数据处理量小等 优势。

- WANG W C, HWANG C H, LIN S Y. Vibration measurement by the time-averaged electronic speckle pattern interferometry methods [J]. Applied Optics, 1996, 35(22): 4502-4509.
- [2] MIRZA S, SINGH P, KUMAR R. Measurement of transverse vibrations/visualization of mode shapes in square plate by using digital speckle pattern interferometry and wavelet transform [J]. Optics and Lasers in Engineering, 2006, 44(1): 41-55.
- [3] ZHANG C, FANG H, REN Y P, et al. Detecting vibration mode shapes by use of phase shifting digital speckle pattern interferometry [J]. Semiconductor Optoelectronics, 1998, 19 (4): 260-262 (in Chinese).
- [4] JIA S H, LE K D, ZHAO H, et al. High/low-precision digital speckle pattern interferometry for vibration measurement [J]. Journal of Xi' an Jiaotong University, 2000, 29(2): 126-129(in Chinese).
- [5] BUTTERS J N, LEENDERTZ J A. Speckle pattern and holographic techniques in engineering metrology [J]. Optics and Laser Technology, 1971, 3(1):26-30.
- [6] WANG C F, LIU L, WANG G B. Blurred image processing method for direction and amplitude measurement of high frequency vibration [J]. Journal of Vibration and Shock, 2005, 24(5): 59-62(in Chinese).
- ZHANG Q C. Technical study of three-dimensional shape measurement for dynamic process [D]. Chengdu: Sichuan University, 2005:44-45 (in Chinese).
- [8] ZHANG Q C, SU X Y. High-speed optical measurement for the drumhead vibration [J]. Optics Express, 2005, 13(8):3310-3316.
- [9] ZHAI S L, GUO Z M, ZHANG Q C. Vibration mode analysis of membrane based on bi-color fringe projection [J]. Optics & Optoelectronic Technology, 2013, 11(2): 59-66(in Chinese).
- [10] WEN Y F, SU X Y, ZHANG Q C, et al. Vibration mode analysis of films using time-average fringe method [J]. Journal of Optoelectronics Laser, 2009, 20(1):63-67(in Chinese).
- WEN Y F, SU X Y, ZHANG Q C, et al. Vibration mode analysis of membrane using structured illumination time-average fringe method
 [J]. Optics & Optoelectronic Technology, 2009, 7(1):51-54(in Chinese).
- [12] CAO S P, WANG W F, XUE X C. Dynamic 3-D shape measurement based on de-interlaced images by Fourier transform [J]. Laser Technology, 2013, 37(6):736-741(in Chinese).