版权所有 © 《激光技术》编辑部 http://www.jgjs.net.cn

 第 38 卷 第 5 期
 激 光 技 术
 Vol. 38, No. 5

 2014 年 9 月
 LASER TECHNOLOGY
 September, 2014

文章编号: 1001-3806(2014)05-0638-05

移相相关法计算相位差的研究

刘玉周,赵 斌*

(华中科技大学 机械科学与工程学院 仪器系,武汉 430074)

摘要:为了提高相位式测距仪的测量精度,采用移相相关方法来估计两同频正弦信号的相位差。首先将每路 信号移相2π后和原信号做相关来计算自相关,以减少噪声的影响;其次用少许数据初步估算相位差,并将一路信 号移相,使两路信号的相位差移到 π/2(或3π/2)附近;然后用较多的采样数据计算两路信号的相位差,将结果再 减去移相量得到最终的相位差。同时分析了频率误差对相位差计算精度的影响,进行了理论分析和仿真实验验 证。结果表明,该方法计算的误差大大减小。这对提高测距仪的测量精度是有帮助的。

关键词:测量与计量;移相相关法;相位差;频率误差

中图分类号: TH741 文献标志码: A doi:10.7510/jgjs.issn.1001-3806.2014.05.013

Study on phase difference algorithm based on phase-shift correlation analysis

LIU Yuzhou, ZHAO Bin

(Department of Instrumentation, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract: In order to improve the accuracy of a phase-shift range finder, a phase-difference algorithm based on phase-shift correlation analysis was proposed to estimate the phase-difference between two sinusoidal signals with same frequency. For reducing the influence of noise, the autocorrelation between the original and 2π shifted signal was calculated firstly. Secondly, the phase difference was estimated approximately with a few sampled data and the initial phase of one signal was shifted by $\Delta\theta$ to make the phase difference between two signals to be near $\pi/2(\text{ or } 3\pi/2)$. Then, the phase-difference was calculated with whole set of data by correlation method and the final phase difference was obtained by subtracting $\Delta\theta$. The influence of frequency error was analyzed. Theoretical analysis and simulation shows that the error of this method is greatly reduced. The proposed method can improve the accuracy of a range finder.

Key words: measurement and metrology; phase-shift correlation analysis; phase difference; frequency error

引 言

相位式激光测距在 3-D 成像^[1]、机器人导 航^[2]、表面检测^[3]等领域有着广泛的应用,它通过 测量光波往返的相位差来计算时间延迟从而计算待 测距离^[4-5]。与模拟测相方法相比,数字方法测量相 位差具有不受环境干扰、两路信号间无串扰等优点, 但也有不足。过零比较法^[6]在信号频率较高、噪声 较大时误差较大^[7];当实际的傅里叶变换的最大值

* 通讯联系人。E-mail:zhaobin63@ sohu.com

收稿日期:2013-11-29;收到修改稿日期:2014-01-13

出现在两采样点之间时,快速傅里叶变换^[8]会有较 大误差,若频率扰动,插值快速傅里叶变换法也很难 达到较高的精度^[4];拟合法^[9]计算相位差的缺点是 计算时间太长并且迭代可能不收敛^[10]。在频率较 高时,商业化相位差测量仪器分辨率很难超过 0.05°,而有些文献中的方法只是达到了较高的分辨 率,而不是较高的精度^[4]。相比上面所述的相位差 测量方法,相关法计算相位差^[11]被认为是最优的时 间延迟算法^[12-13],采用快速算法^[14]后计算速度快, 且具有抑制噪声能力较强并可计算中频信号的相位 差等优点。但在采用相关算法的测距试验中发现, 距离连续移动时,非常靠近0°或180°相位差出现的 几率很低,并且在理论相位差处于0°或180°附近 时,可能会产生1°以上的相位差误差。作者对相关 法估计相位差的理论分析后,提出一种移相相关法,

基金项目:国家九七三重点基础研究发展计划资助项目(2013CB035405)

作者简介:刘玉周(1968-),男,博士研究生,主要研究 方向为光电精密测量。

版权所有 © 《激光技术》编辑部 http://www.jgjs.net.cn

第38卷 第5期

可消除上述缺陷,进一步提高相位差测量精度。

1 移相相关法计算相位差的原理及分析

1.1 普通相关法估计相位差的误差分析

设有频率为 f_0 的两个正弦信号x(k)和y(k), 幅值分别为A和B,初相位分别为 φ_x 和 φ_y ,相位差 $\varphi = \varphi_x - \varphi_y$ 。现对其进行采样,采样频率为 $f_s = nf_0$, 整数 $n \ge 3$,则数字频率 $f = f_0/f_s$ 。对x(t)和y(t)均 做采样长度 N_0 同步整周期采样后的数据序列x(k)和y(k)为(k为序号):

$$x(k) = A\sin(2\pi f k + \varphi_x) + N_x(k) \qquad (1)$$

$$y(k) = B\sin(2\pi f k + \varphi_x) + N_x(k)$$
 (2)

式中,噪声 $N_x(k)$ 和 $N_y(k)$ 一般是互不相关的加性 白噪声,均值为0,方差为 σ_x^2 和 σ_y^2 。则普通相关 法按照下式得估计相位差:

$$\hat{\varphi} = \arccos \frac{R_{xy}(0)}{\sqrt{R_x(0) \cdot R_y(0)}}$$
(3)

式中, 互相关 $R_{xy}(0) = \sum_{k=1}^{N_0} x(k) \cdot y(k) / N_0 =$ 0. $5AB\cos\varphi; x(k)$ 的自相关 $R_x(0) = \sum_{k=1}^{N_0} x^2(k) / N_0 =$ 0. $5A^2 + \sigma_x^2; y(k)$ 的自相关 $R_y(0) = \sum_{k=1}^{N_0} y^2(k) / N_0 =$ 0. $5B^2 + \sigma_x^2_0$

取 A = B, $\sigma_x^2 = \sigma_y^2 = \sigma^2$, 并记信噪比为 $R = A^2/(2\sigma^2)$,则估计相位差 $\hat{\varphi}$ 与相位差的真值的偏离 量为下式:

$$b = \hat{\varphi} - \varphi =$$

$$\operatorname{arccos}\left[\frac{AB\cos\varphi}{2\sqrt{(A^2/2 + \sigma_x^2)(B^2/2 + \sigma_y^2)}}\right] - \varphi \approx \frac{\cot\varphi}{R} \qquad (4)$$

这表明普通相关法对含有噪声的信号的相位差 估计不是无偏估计。

(3)式是关于随机变量 $N_x(k)$ 和 $N_y(k)$ 的函数, 计算出自相关的方差为 $\sigma_{R_x}^2$ 和 $\sigma_{R_y}^2$,互相关的方差 为 $\sigma_{R_{xy}}^2$,按照2 维随机变量非线性函数方差的计算方 法^[15],可得到普通相关法计算估计相位差的方差:

$$v(\hat{\varphi}) = \left(\frac{\partial\varphi}{\partial R_{xy}}\right)^2 \sigma_{R_{xy}}^2 + \left(\frac{\partial\varphi}{\partial R_x}\right)^2 \sigma_{R_x}^2 + \left[\frac{\partial\varphi}{\partial R_y}\right]^2 \sigma_{R_y}^2 = \frac{2R + 1 + \frac{2R^3}{(R+1)^2} \cos^2\varphi}{N_0[(R+1)^2 - R^2 \cos^2\varphi]}$$
(5)

因此,普通相关法估计相位差的均方差(mean square error, MSE) $E(\hat{\varphi})$ 为:

$$E(\hat{\varphi}) = b^{2} + v(\hat{\varphi}) =$$

$$\frac{\cot^{2}\varphi}{R^{2}} + \frac{2R + 1 + \frac{2R^{3}}{(R+1)^{2}}\cos^{2}\varphi}{N_{0} \lceil (R+1)^{2} - R^{2}\cos^{2}\varphi \rceil}$$
(6)

在(6)式中取 $N_0 = 480 \times 10^3$, R = 30 dB 时, 均方 误差与实际相位差 φ 的关系图见图 1。

Fig. 1 $E(\hat{\varphi})$ versus φ with traditional correlation method

(6)式表明,普通相关法估计相位差有两点不足:(1)增加采样长度 N₀ 只能减小(6)式中的 v(φ̂)
项,而偏离量 b 项不变,精度无法再提高;(2)误差随相位差真值 φ 变化而不同,当实际相位差越靠近0°或180°时,估计的偏离量越大。

在激光相位式测距中,采用普通相关法估计相 位差的不足具体表现为:当待测距离连续变化时,测 距误差周期性变化,且很少出现359°~360°,0°~1° 和179°~181°内的相位差。

1.2 移相相关法计算相位差的原理

移相是指将采样序列 x(k)或 y(k)的前面的几 个数据去掉,即采样序列向左移位,从而改变其初相 位的方法。

移相相关法在计算相位差时,先后有两次移相: 一是用移相 360°后的信号与原信号做相关,代替原 来的自相关运算,简称为移相自相关;二是以较少的 数据初步估计相位差后,将一路信号移相 Δθ,使两 路信号的相位差约为 90°或者 270°,将此时估计的 相位差减去附加移相量 Δθ 后得到实际相位差,简 称为移相计算相位差。

1.2.1 移相自相关 由于不同时间的随机噪声是 不相关的,因此,若将信号与向左移位一个周期的信 号做相关,可消除自相关中的噪声项:

$$R_{x}'(0) = \frac{1}{N_0} \sum_{k=1}^{N_0} x(k) \cdot x(k+n) =$$

激光技术 jgjs@sina.com

技

术

激

光

$$\frac{1}{2}A_{x}^{2} + \frac{1}{N_{0}}\sum_{k=0}^{N_{0}}N_{x}(k) \cdot N_{x}(k+n) = \frac{1}{2}A_{x}^{2} (7)$$

$$\exists k :$$

$$R_{y}'(0) = \frac{1}{N_0} \sum_{k=1}^{N_0} y(k) \cdot y(k+n) = \frac{1}{2} A_{y}^{2} (8)$$

此时,相位差的估计式变为:

$$\hat{\varphi} = \arccos \frac{R_{xy}(0)}{\sqrt{R_{x}'(0) \cdot R_{y}'(0)}}$$
(9)

(9)式是相位差 φ 的无偏估计。按(9)式估计 相位差的均方误差等于方差 $v(\hat{\varphi})$:

$$E(\hat{\varphi}) = v(\hat{\varphi}) = \frac{(2R+1)(2+\cos^2\varphi)}{2N_0 R^2 \sin^2\varphi}$$
(10)

同样固定 $N_0 = 480 \times 10^3$, R = 30dB 时,(10)式 中均方误差随相位差真值的变化情况见图 2。对于 固定的采样长度 N_0 和信噪比 R,(10)式与(6)式的 第 2 项(方差项)数量级相当,但其比(6)式少了 b这一项,因此其真值在 90°和 270°以外的均方误差 要小得多,在 90°和 270°附近均方误差变化也平缓 一些,但在 0°和 180°附近的相位差误差仍然较大。

Fig. 2 $E(\hat{\varphi})$ versus φ with phase-shift autocorrelation method 1.2.2 移相计算相位差 注意到(10)式在 $\varphi = 90^{\circ}$ 和 $\varphi = 270^{\circ}$ 时有极小值,这是由于估计相位差(9)式 中反余弦的特性导致的。为避免在 0°和 180°附近 较大的计算误差,首先用较少的数据初步估算相位 差,然后将 y(k)或 x(k)移相 $\Delta\theta(\Delta\theta \leq 90^{\circ})$,从而使 相位差在 90°或 270°附近,再以较多采样数据重新 计算相位差,将结果减去 $\Delta\theta$ 得到精确相位差。

信号的一个周期内有 n 个采样点,移相后的相 位差相距 90°(或 270°)不超过 360°/n。因此在不 考虑信号频率误差时,经过上述两次移相后计算的 相位差均方误差为下式:

$$E(\hat{\varphi})_{1} \leqslant \frac{(2R+1)\left[2 + \sin^{2}\left(\frac{360^{\circ}}{n}\right)\right]}{2N_{0}R^{2}\cos^{2}\left(\frac{360^{\circ}}{n}\right)} \quad (11)$$

1.2.3 频率误差引起的相位差估计误差 晶振的 老化和频率漂移均会引起信号频率的误差,频率误 差将导致两次移相不准确,从而产生相位差估计误 差。

若信号数字频率的相对误差(准确度)为 δ_f ,理 论数字频率为f,实际数字频率为 $f(1 + \delta_f)$,则不考 虑噪声时,x(k)移相 360°后的自相关为:

$$R_{x}'(0) = \frac{1}{N_{0}} \sum_{k=1}^{N_{0}} x(k) \cdot x(k+n) = \frac{1}{N_{0}} \sum_{k=1}^{N_{0}} A \sin[2\pi f(1+\delta_{f})k+\varphi_{x}] \cdot A \sin[2\pi f(1+\delta_{f})(k+n)+\varphi_{x}] = \frac{A^{2}}{2} \Big[1 - \frac{\delta_{f}}{1+\delta_{f}} \cos(2\varphi_{x}) \Big]$$
(12)

同样有:

$$R_{y}'(0) = \frac{1}{N_{0}} \sum_{k=1}^{N_{0}} y(k) \cdot y(k+n) = \frac{B^{2}}{2} \left[1 - \frac{\delta_{f}}{1+\delta_{f}} \cos(2\varphi_{y}) \right]$$
(13)

将上两式的 $R_{x}'(0)$ 和 $R_{y}'(0)$ 代入相位差的估 计(9)式,得到移相自相关引起的相位差误差 $\varphi_{f_{1}}$ 为:

$$\Delta \varphi_{f_1} = -\frac{\delta_f}{2} (\cos 2\varphi_x + \cos 2\varphi_y) \tan\left(\frac{360^\circ}{n}\right) (14)$$

另外,频率误差引起的附加相位差 $\Delta \theta$ 的误差为:

$$\Delta \varphi_{f_2} = \text{ABS} \Big[\text{ABS}(\pi - \varphi) - \frac{\pi}{2} \Big] \delta_f \quad (15)$$

式中,ABS 表示取绝对值。

因此若在程序中未校正频率,则频率误差引起的总的移相误差 $\Delta \varphi_f$ 为:

$$\Delta \varphi_{f} = \Delta \varphi_{f_{1}} + \Delta \varphi_{f_{2}} \leq \left[\frac{\pi}{2} + \tan\left(\frac{360^{\circ}}{n}\right)\right] \delta_{f}$$
(16)

Fig. 3 Maximum phase difference error versus frequency error

对于不同数字频率准确度 δ_f 和一个信号周期 内的采样点数 n,对应的最大移相误差 $\Delta \varphi_{f,max}$ 见图 3。在相位式激光测距应用中,采用温补晶振或恒温 晶振驱动数字锁相环等方法产生的信号的频率稳定 度较高,一般其数字频率准确度优于 10×10⁻⁶,当 $n \ge 6$ 时,由频率误差引起的最大移相误差小于 0.002°。即使频率准确度为 20×10⁻⁶, $n \ge 48$ 时,由 频率误差引起的最大移相误差小于 0.002°,小于预 期精度 0.01°的 1/5。

在考虑噪声和频率误差时,移相相关法估计相 位差的均方误差为:

$$\frac{E(\hat{\varphi}) = E(\hat{\varphi})_1 + \Delta \varphi_f^2 \leq (2R+1)\left[2 + \sin^2\left(\frac{360^\circ}{n}\right)\right]}{2N_0 R^2 \cos^2\left(\frac{360^\circ}{n}\right)} + \left[\frac{\pi}{2} + \tan\left(\frac{360^\circ}{n}\right)\right]^2 \delta_f^2 \qquad (17)$$

在理论相位差 0°至 360°整个区间内,移相相关 法估计的均方误差小于 - 48dB,即相位差估计误差 小于 0.004°。

与普通相关法相比,移相相关法估计相位差的 误差在不同相位差真值处的估计误差基本相同,且 误差大大减小了;在0和180°理论相位差附近,不 再有很大的估计偏差;在计算量上只是增加了3次 移相和一周期采样点参与运算的相位差初步估计, 因此在精度大大提高的同时,计算时间并没有明显 增加,当 N₀ = 480 × 10³ 时,在普通计算机上的计算 时间约为 8ms,满足实时测距的要求。

2 仿真实验

以 Monte Carlo 方法生成信噪比 R = 30dB、采样 长度 480 × 10³ 的两个正弦信号 x(k)和 y(k),对于

Fig. 4 The theoretical and simulation data of the traditional correlation method

不同的实际相位差 φ, 按(3)式表述的普通相关法 仿真计算 1000 次相位差,仿真计算的均方误差随实 际相位差 φ 变化的曲线见图 4,带圈的曲线为按(6) 式计算的理论值,带点的曲线为仿真实验值,理论值 和仿真实验值一致。图中均方差的最大仿真值为 8.1dB,对应的相位差误差为 2.54°。

图 5 为移相相关法估计的相位差估计误差, 仿 真条件和图 4 一样, 并增加频率误差为 10 × 10⁻⁶这 一条件。其中图 5a 为理论最大均方误差和仿真的 均方误差随着实际相位差 φ 变化的曲线, 仿真的均 方误差为带点的曲线, 而带圈的曲线为当数字频率 误差 $\delta_f = 10 \times 10^{-6}$, $N_0 = 480 \times 10^3$, n = 48 时, 按 (17)式计算的理论最大均方误差, 该图中最大均方 误差的仿真值为 – 48dB。而图 5b 为仿真的平均误 差和标准差, 平均误差反映的是(16) 式所示的频率 误差引起的相位差误差。

Fig. 5 Performance of phase-shift correlation method a—theoretical and simulation E b—average error and standard deviation of formula(16)

3 结 论

移相相关法计算相位差适用于计算包含噪声的、频率相同且已知的两正弦信号的相位差。该方法不但具有普通相关法计算速度快和能计算中、低频信号相位差的优点,而且进一步抑制了噪声的影响。在频率误差不大于 10 × 10⁻⁶、信噪比 *R* = 30dB、采样长度480×10³时,相位差误差为0.004°。

版权所有 © 《激光技术》编辑部 http://www.jgjs.net.cn

激光技术

若信号频率稳定度高于 20×10⁻⁶,且每周期采样点数大于 48 时,频率误差引起的移相误差不超过 0.002°,可以满足0.01°的相位差估计精度。当信号频率准确度很低且要求很高的相位差估计精度时,可以在计算相位差以前先校正频率。通过增加采样长度、提高采样速率、减小频率误差或者多次测量求平均值等办法,可以进一步减小相位差误差。

参考文献

- [1] SCHÖNER H, BAUER F, DORRINGTON A, et al. Image processing for three-dimensional scans generated by time-of-flight range cameras[J]. Journal of Electronic Imaging, 2012, 21(2): 023012.
- [2] CHOU Y Sh, LIU J S. A robotic indoor 3-D mapping system using a 2-D laser range finder mounted on a rotating four-bar linkage of a mobile platform [J]. International Journal of Advanced Robotic Systems, 2013, 10(45):1-10.
- [3] MAYKOLPINTO N A, ROCHA L F, PAULOMOREIRA A. Object recognition using laser range finder and machine learning techniques [J]. Robotics and Computer-Integrated Manufacturing, 2013,29(1):12-22.
- [4] BAUD C, TAP-B'ETEILLE H, LESCURE M, et al. Analog and digital implementation of an accurate phasemeter for laser range finding[J]. Sensors and Actuators, 2006, A132(11):258-264.
- [5] GAO Y Y, LI Y H, FENG Q L, et al. Optical design of a laser distance measuring system based on high frequency digital phase detection[J]. Laser Technology, 2013,37(3): 353-356(in Chinese).
- [6] YOON H S, SONG H J, PARK K W. A phase-shift laser scanner based on a time-counting method for high linearity performance [J]. Review of Scientific Instruments, 2011, 82(7):075108.

- [7] BERTOTTI F L, HARA M S, ABATTI P J. A simple method to measure phase difference between sinusoidal signals [J]. Review of Scientific Instruments, 2010, 81(11):115106.
- [8] ACCATTATIS A, SAGGIO G, GIANNINI F. A real time FFTbased impedance meter with bias compensation [J]. Measurement, 2011,44(4):702-707.
- [9] MARTINO M, LOSITO R, MASI A. Analytical metrological characterization of the three-parameter sine fit algorithm [J]. ISA Transactions, 2012, 51(2):262-270.
- [10] RAMOS P M, SERRA A C. A new sine-fitting algorithm for accurate amplitude and phase measurements in two channel acquisition systems[J]. Measurement, 2008, 41 (2):135-143.
- [11] LIANG Y R, DUAN H Z, YEH H C. Fundamental limits on the digital phase measurement method based on cross-correlation analysis[J]. Review of Scientific Instruments, 2012, 83 (9): 095110.
- [12] WALKER W F, TRAHEY G E. A fundamental limit on delay estimation using partially correlated speckle signals [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1995,42(2):301-308.
- [13] VIOLA F, WALKER W F. A comparison of the performance of time-delay estimators in medical ultrasound [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2003,50(4):392-401.
- [14] LUO J W, KONOFAGOU E E. A fast normalized cross-correlation calculation method for motion estimation [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010,57(6):1347-1357.
- [15] ZHANG S L, ZHANG K, DUAN H Z. Approximate computation of expectation and variance of nonlinear function of continuous random variable [J]. Journal of Geodesy and Geodynamics, 2008,28(4):107-109(in Chinese).