版权所有 © 《激光技术》编辑部 http://www.jgjs.net.cn

 第 38 卷 第 5 期
 激 光 技 术
 Vol. 38, No. 5

 2014 年 9 月
 LASER TECHNOLOGY
 September, 2014

文章编号: 1001-3806(2014)05-0614-05

基于 Mach-Zehnder 结构微环谐振腔全光逻辑门的研究

高磊,王涛*

(华中科技大学 武汉光电国家实验室,武汉 430074)

摘要:为了解决全光逻辑门结构所需抽运能量过大的问题,提出了一种基于 Mach-Zehnder 结构微环谐振腔的 全光控制逻辑门结构。通过在微环波导上加入空气孔加强对光的限制,增强了带边附近的 3 阶非线性效应,从而 减小达到所需相移的抽运能量。将微环谐振腔与 Mach-Zehnder 结构结合,采用光学 Kerr 效应控制不同微环内相移 的改变,从而实现不同逻辑门功能。同时进行了理论分析与仿真验证,计算了不同尺寸空气孔对于结构的影响,并 对于不同逻辑功能的控制方法,验证了结构的可行性。结果表明,这种逻辑门结构所需抽运能量不超过 10dBm,延 迟处于皮秒量级,速度快,器件的尺寸处于微米量级,该结构可以同时实现不同的逻辑门状态,对于全光网络的研 究有指导意义。

关键词:集成光学;逻辑门;微环谐振腔;Kerr效应 中图分类号:TN256 文献标志码:A doi:10.7510/jgjs.issn.1001-3806.2014.05.008

Study on Mach-Zehnder type all optical logic gate based on microring resonator

GAO Lei, WANG Tao

(Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract: In order to solve the problem of high pump power of logic gates, a novel Mach-Zehnder type all optical logic gate based on micro-ring resonator was proposed. The periodical patterns of air holes added in the micro-ring waveguide provide strong confinement on light, which enhances the third order nonlinear Kerr effect around the band edge and decreases the pump power of phase shift. Combining micro-ring resonator with Mach-Zehnder structure, different logic function can be realized with the phase shift in the different micro-rings controlled by Kerr effect. The impact of the different size of air holes on the structure was calculated and the detailed control methods of the logic gates were verified. The feasibility was proved. The simulation results show that this device possesses several practical advantages, such as low power consumption of less than 10dBm, delay of ps order, high speed data processing ability and μ m order dimension. The device achieves the different kinds of logic gates and has the guiding significance to all optical networks.

Key words: integrated optics; logic gates; microring resonator; Kerr effect

引 言

从光电器件集成化的角度考虑,马赫曾德尔干涉仪(Mach-Zehnder interferometer, MZI)与微环谐振腔结合是一个理想的选择^[1]。微环谐振腔可以使 光脉冲在微环内循环从而产生相移,缩小了产生非

基金项目:国家自然科学基金资助项目(61376055);国家九七三重点基础研究发展计划资助项目 (2010CB923204)

作者简介:高 磊(1988-),男,硕士研究生,现主要从 事微环谐振腔的研究。

* 通讯联系人。E-mail:wangtao@hust.edu.cn 收稿日期:2013-09-23;收到修改稿日期:2013-11-07 线性光学效应的物理尺寸,同时可以降低实际能耗。 而且 Mach-Zehnder 结构与微环谐振腔结合已经在 很多方面都有广泛的应用,例如全光格式转换^[2]、 全光开关^[3]、色散补偿^[4]、延时线等等。

本文中设计的全光逻辑门器件需要光脉冲能够 在微环谐振腔内产生相移并且可调。然而对于全光 器件显而易见的缺点是:由于3阶非线性光学效应 较弱,达到所需相移的抽运光能量过大^[5],实际中 无法应用。因此,作者将微环谐振腔与椭圆形空气 孔相结合,周期性空气孔结构的带边慢光效应可以 增强非线性效应^[6]。与此同时,这种结构能够使器 件在保持较小尺寸的条件下,降低所需要的抽运能 量,而这也正是集成光子器件所需的优点。 第38卷 第5期

而与已有的逻辑门结构比较,例如基于半导体 光放大器(semiconductor optical amplifier,SOA)的交 叉相位调制(cross phase modulation,XPM)效应^[7]、 基于周期性极化铌酸锂(periodically poled lithium niobate,PPLN)的电光效应^[8]、基于绝缘体上硅(silicon on insulator,SOI)的热光效应^[9]相比,本文中的 结构利用的是3阶非线性Kerr效应,达到 π 相移只 需要7dBm。而且整个结构全光控制^[10],速度较快, 微环谐振腔便于集成,可以在一个器件上实现多种 逻辑门结构。

本文中提出了一种新型的带有空气孔结构的微 环谐振腔逻辑门器件,首先介绍了这种逻辑门器件 所需要的理论基础,然后分析其理论模型,计算器件 的相移、抽运能量与仿真结果,最后将得到结论。

1 理论分析

图1为带有椭圆形空气孔结构的微环谐振腔的 示意图。其中 S+1表示输入光, S-2表示输出光, 另 外,S-1量表示泄露的光;S+2表示外界渗透的光, S₋₁,S₊₂不予考虑,对于仿真的结构没有影响。其结 构的参量如下:微环谐振腔的直径是14.3µm,微环 与直波导的宽度均为450nm,并且二者之间的耦合 间距为100nm,在微环谐振腔上有100个椭圆形空 气孔,周期为0.45µm,空气孔的长短半径分别为 180nm 和 100nm。空气孔位于微环谐振腔波导的中 线上且依次沿着光传播方向排列。整个器件的衬底 是3µm的GaAs 埋层, 其上是600nm的Al_{0.8}Ga_{0.2}As 缓冲层, 250nm 厚的 Al_{0.36} Ga_{0.64} As 导光层以及 150nm 厚的 Al_{0.62}Ga_{0.38}As 盖层。器件垂直方向结构 由分子束外延实现,而水平方向结构由光刻形成。 作者选择 AlGaAs 作为器件材料而不是常用的 Si 材 料是因为 AlGaAs 的非线性系数比 Si 大,因而可以 大大地减小逻辑门状态改变所需的抽运能量。

作者设计这种周期性结构的目的是将微环谐振

腔中的光学 Kerr 效应最大化,充分利用周期性结构 带边强烈的慢光作用增强3阶非线性作用,因而可 以极大地降低改变非线性相移所需要的抽运能量。 在保持较小微环结构的条件下就可以改变逻辑门状 态,达到全光控制逻辑门的目的。图2由3维时域 有限差分(3-D finite difference time domain, 3-D FDTD)方法计算可得,可知整个微环结构的带边位 于1360nm 附近。因此在本文中计算波长采用 1360nm。

Fig. 2 Bandage of the patterned microring device 微环内的场强振幅为下式:

$$\frac{\mathrm{d}a}{\mathrm{d}t} = \left(\mathrm{j}\omega_0 - \frac{1}{\tau_0} - \frac{1}{\tau_e}\right)a + kS_{+1}\exp(-\mathrm{j}\beta r) \quad (1)$$

假定 S_{+1} 的时间变化率为 $\exp(j\omega t)$,则有:

$$a = \frac{kS_{+1}\exp(-j\beta r)}{j(\omega - \omega_0) + \frac{1}{\tau_0} + \frac{1}{\tau_e}}$$
(2)

式中,*a* 是微环谐振腔内的振幅;*t* 是时间; ω 是频 率; ω_0 是谐振频率; $1/\tau_0$ 是由于微环的损耗引起的 衰减速率,这其中包括了椭圆形空气孔的影响; $1/\tau_e$ 是由于光在直波导与微环谐振腔之间耦合时引起的 衰减速率;*k* 是与波导中的传播模式有关的输入耦 合系数; β 是光在波导中传输的传输常数;*r* 是微环 谐振腔的半径。输出光波由下式表示:

$$S_{-2} = \left[S_{+1} - a \sqrt{\frac{1}{\tau_{e}}} \exp(j\beta r) \right] \exp(-2j\beta r) (3)$$

耦合系数的表示为:

$$k = \sqrt{\frac{1}{\tau_e}} \tag{4}$$

由以上公式可以可到结构的透射系数为:

$$T = \left|\frac{S_{-2}}{S_{+1}}\right|^2 = \frac{(\omega - \omega_0)^2 + (\frac{1}{\tau_0})^2}{(\omega - \omega_0)^2 + (\frac{1}{\tau_0} + \frac{1}{\tau_e})^2} \quad (5)$$

式中,透射率与两个因素有关, $1/\tau_0$ 与椭圆形空气 孔影响带来的损耗有关, $1/\tau_e$ 与结构耦合带来的损 激 光 技 术

耗有关。

1.1 相移计算

基于微环谐振腔结构的非线性相移 $\Delta \varphi$ 的改 变^[11]是由于折射率 n_0 的改变 Δn_0 光强 I 与折射率 的改变 Δn 的关系为 $\Delta n = n_2 I$,其中 n_2 是非线性系 数,对于 AlGaAs 来说, $n_2 = 1 \times 10^{-13} \text{ cm}^2/\text{W}^{[12]}$,微环 谐振腔结构的相移表达式如下:

$$\Delta \varphi = -\frac{2\pi}{\lambda_0} L \frac{c}{v_{\rm g}} \frac{n_2}{n_0} I \tag{6}$$

式中,*L* 代表微环谐振腔的周长, λ_0 是输入微环的波 长,*c* = 3 × 10⁸ m/s 是光速,对于 AlGaAs 导光层, $n_0 = 3.346$,将 $\Delta n = n_2 I$ 用 $\Delta n = \overline{n} |E|^2$ 代替,相移 $\Delta \varphi$ 也可以表示为:

$$\Delta \varphi = -\frac{2\pi}{\lambda_0} L \frac{c}{v_{\rm g}} \frac{n_2}{n_0} |E|^2 = -\frac{2\pi}{\lambda_0} L \frac{c}{n_0} \left(\frac{1}{v_{\rm s}}\right)^2 \frac{n_2}{n_2} \frac{2}{\varepsilon} I$$
(7)

式中, ε 是介电常数,并且 $I = v_g(\varepsilon/2) |E|^2$; n_2 对应 于非线性光学极化参量 $\operatorname{Re}[\chi^{(3)}]$;并且相移 $\Delta \varphi$ 与 群速率 v_g 的平方呈反比。微环上的周期性结构可 以增加群折射率,减小群速率,因而作者设计的结构 可以在较小的抽运光的条件下,达到较大的相移。

当抽运光注入到微环谐振腔中时,由于光学 Kerr效应使得探测光相移改变,因此相移的改变与 抽运光的强弱相关。由于在带边附近慢光效应增 强,3阶非线性作用增强,所以达到一定相移所需要 的抽运能量有着显著的下降。图3为抽运能量与微 环内非线性相移的关系,可以通过控制抽运能量来 调节微环谐振腔内的相移,而微环相移的改变与逻 辑门状态的改变相关,后面将详细介绍。

椭圆孔的形状也会对相移产生影响。图4为相移随着椭圆形空气孔形状变化的曲线。a/b代表空气孔短轴长度与长轴长度的比率,分别为0.48,0.56和0.66。AlGaAs材料的非线性系数为1×

Fig.4 Nonlinear phase shift versus radius of air holes 10⁻¹³ cm²/W,波长在 1360nm 附近。其中微环谐振 腔结构所加的抽运能量均为 7dBm。

从图 4 可以看出,当椭圆孔长短半径的比例增加时,结构的相移也相应地增加了。抽运可以通过让空气孔变得更加长,从而有效地增加非线性相移。可能产生这种现象的原因是由于空气孔使得微环谐振腔中的光强分布更加集中,相当于有效地增加了抽运光的能量,产生了更加强的光学 Kerr 效应,因而相移的改变也更加明显。

微环谐振腔的损耗主要与环形波导上的椭圆孔 相关,根据仿真结果,椭圆孔越大,则损耗越大。其 次还与微环谐振腔的材料吸收损耗,弯曲损耗等有 关。本文中主要针对与椭圆孔有关的损耗进行了计 算,根据仿真结果,当空气孔的尺寸超过所设定的值 时,器件的损耗会快速的增加超过 50dB/cm,同时器 件制造的难度以及成本都会增加,因此,仿真计算主 要针对于空气孔半径不超过 100nm 时的情况。可 以通过控制椭圆孔的大小控制损耗,但要注意的是, 椭圆孔的缩小伴随着达到同样相移所需抽运的增 加。

1.2 透过率的计算

在本文设计中,采用的是椭圆形的空气孔而不 是圆形或是其它形状的空气孔,这是因为在仿真中 发现,椭圆形的空气孔可以使结构在保持具有一定 非线性效应的情况下,仍旧有较高的透射率。图 5 为改进的微环谐振腔与没有加空气孔的标准的微环 谐振腔结构透射率的比较,τ₀ 和τ_e通过时域有限差 分法仿真得到的 Q 值计算得到。很明显,加了空气 孔的微环谐振腔结构的透射谱比标准微环结构的透 射谱更加窄,由定义可知,所设计结构的 Q 值更大, 但是由于空气孔的结构使得微环内的光波损耗速度 增加,而这显然对 Q 值的增加不利,因此可以得出 结论,由于周期性结构导致微环中光聚集效应更强, 同时慢光效应也显著增加,而慢光效应的增强可能

版权所有 © 《激光技术》编辑部 http://www.jgjs.net.cn

第38卷 第5期

是 Q 值增加的主要原因。有孔结构的 Q 值比无孔 结构的 Q 值更大,但是随之而来的问题是带宽的减 小,需要保证在满足结构带宽的条件下,尽可能地提 升结构的 Q 值。值得注意的是,改进后的结构的带 宽比标准微环较小,但由于带宽超过 1nm,因而实 际应用中并不构成影响。

图 5 为中心波长附近改进微环谐振腔与标准微 环谐振腔的透射率对比, r_s 代表标准微环, r₁ 与 r₂ 代表有着椭圆形空气孔的微环。r₁ 微环的长短半径 分别为0.18μm和0.1μm, m₂ 微环的长短半径分 别为0.09μm和0.05μm。其它的结构参量与理论 分析中的参量相同。

2 微环谐振腔逻辑门结构

图 6 为基于 Mach-Zehnder 结构微环谐振腔全 光逻辑门的示意图。器件的工作过程如下:探测光 由方向耦合器输入到结构中,抽运光直接注入到微 环谐振腔中与从直波导耦合到微环中的探测光作 用,从而改变所需要的相移。下臂上的相移改变器 件可由其它方法如热光效应,电光效应调控,仅在不 同的逻辑门功能改变时发生变化。当逻辑门功能不 变时,固定相移器件的状态保持不变。

Fig. 6 The structure of the logic gates of microring resonator

输出端由耦合器控制,输出端口分别为干涉相 长和干涉相消,即两个端口代表相反的逻辑操作。 因而通过不同的抽运能量与相移改变,选择不同的 初始相位差和输出耦合器端口,一个器件可以实现 多种逻辑门的操作。 表 1 为不同逻辑门状态下,上下臂微环所需要 改变的相移以及输出端的逻辑状态。表中, $\lambda_{in,1}$ 和 $\lambda_{in,2}$ 是输入信号 1 和输入信号 2; $\lambda_{out,1}$ 和 $\lambda_{out,2}$ 是输 出信号 1 和输出信号 2; $\lambda_{phase,out}$ 是输出相位差。

Table 1 Truth value table of logic gates

	XOR/XNOR				OR/NOR				AND/NAND			
$\lambda_{in,1}$	0	1	0	1	0	1	0	1	0	1	0	1
$\lambda_{\mathrm{in},2}$	0	0	1	1	0	0	1	1	0	0	1	1
$\lambda_{\mathrm{phase,out}}$	0	π	π	0	0	$\frac{2\pi}{3}$	$\frac{4\pi}{3}$	$\frac{2\pi}{3}$	$\frac{\pi}{3}$	$\frac{\pi}{3}$	$\frac{5\pi}{3}$	π
$\lambda_{\text{out},1}$	0	1	1	0	0	1	1	1	0	0	0	1
$\lambda_{\text{out},2}$	1	0	0	1	1	0	0	0_	1	1	1	0

以 XOR/XNOR(异或门/同或门)的逻辑操作为 例,输入的功率需要满足:信号光经过马赫-曾德尔 两臂的微环谐振腔后,相位变化量为π。当无抽运 光输入时,信号光经过不同干涉臂后相位差为0,代 表逻辑0;当有任何一路抽运光输入时,信号光相位 发生 π 的移动,此时两束信号光的相位差为 π ,代表 逻辑1;当两路抽运光同时出现时,信号光相位移动 2π,上下两臂相位差为0,代表逻辑0。其它的逻辑 状态的操作也是类似的操作。对于 OR/NOR 或门/ 或非门以及 AND/NAND(与门/与非门)逻辑操作, 输入的功率需要满足信号光相位经过有抽运光的上 下微环谐振腔后相位移动分别为2π/3和4π/3。通 过控制上下臂的抽运光强度来控制相移,从而达到 逻辑门的功能。具体相移改变参见表1。需要注意 的是,对于 AND/NAND 的逻辑操作时,下臂中需要 引入固定 π/3 的相位移动,可以通过其它如热光效 应或电光效应实现。而其它状态的逻辑操作无需固 定相移。

Fig. 7 The numerical simulation result of the logic gates

图 7a~图 7d 为任意状态下的输出端结果。图

7e~图7j为经过仿真的不同逻辑状态下的输出端 结果。可以看到,所设计的结构可以满足任意一种 情况的逻辑操作。

针刺和凹陷是由于相移变化时,瞬时的相移突 变引起振幅的变化。当 MZI 两臂的相移差持续变 化中瞬时经过 0 或 π 时,引起干涉相长或干涉相 消,振幅突变,但随着相移的继续改变,重新回归稳 态。针刺和凹陷的形状与稳态建立的时间有关。值 得注意的是,针刺和凹陷在信号中所占比例较小,不 会影响相位的判别。

3 结 论

介绍了一种基于 Mach-Zehnder 结构的微环谐 振腔全光控制逻辑门结构。这种结构的特点是在微 环谐振腔波导上加入了椭圆空气孔。这种周期性空 气孔结构可以加强微环内的光强密度,极大地增强 整个器件在带边附近的非线性效应,同时减小了抽 运能量。对于长度更长的空气孔,相同抽运能量控 制下可以有较大的相移改变。整个逻辑门结构全光 控制,可以实现不同逻辑状态的改变,而且所需能量 较小、速度较快,在未来的全光通信网络中有着很好 的应用前景。

参考文献

- PU M H, LIU L, XUE W Q, et al. Widely tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator
 [J]. Optics Express, 2010, 18(6): 6172-6182.
- [2] LU Y Y, LIU F F, QIU M, *et al.* All-optical format conversions from NRZ to BPSK and QPSK based on nonlinear responses in sili-

con microring resonators [J]. Optics Express, 2007, 15(21): 14275-14282.

- [3] ALMEIDA V R, BARRIOS C A, PANEPUCCI R R, et al. Alloptical control of light on a silicon chip[J]. Nature, 2004, 431 (7012): 1081-1084.
- [4] MADSEN C K, LENZ G, BRUCE A J, et al. Multistage dispersion compensator using ring resonators [J]. Optics Letters, 1999, 24(22): 1555-1557.
- [5] DEKKER R, DRIESSEN A, WAHLBRINK T, et al. Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1. 55 μm femtosecond pulses [J]. Optics Express, 2006,14(18): 8336-8346.
- [6] LEE J Y, FAUCHET P M. Slow-light dispersion in periodically patterned silicon microring resonators [J]. Optics Letters, 2012, 37(1):58-60.
- [7] DONG J J, ZHANG X L, HUANG D X. A proposal for two-input arbitrary Boolean logic gates using single semiconductor optical amplifier by picosecond pulse injection [J]. Optics Express, 2009, 17(10): 7725-7730.
- [8] WANG J, SUN J Q, ZHANG X F, et al. Ultrafast all-optical three-input Boolean XOR operation for differential phase-shift keying signals using periodically poled lithium niobate [J]. Optics Letters, 2008, 33(13): 1419-1421.
- [9] ZHANG L, JI R Q, JIA L X, et al. Demonstration of directed XOR/XNOR logic gates using two cascaded microring resonators [J]. Optics Letters, 2010, 35(10): 1620-1622.
- [10] LI X, LI H T, ZHANG Y P, et al. Simulation study on all optical logic NOR gates based on LOA [J]. Laser Technology, 2012, 36(6): 825-827(in Chinese).
- [11] INOUE K, ODA H, IKEDA N, et al. Enhanced third-order nonlinear effects in slow-light photonic-crystal slab waveguides of line-defect[J]. Optics Express, 2009, 17(9): 7206-7216.
- [12] HEEBNER J E, LEPESHKIN N N, SCHWEINSBERG A, et al. Enhanced linear and nonlinear optical phase response of AlGaAs microring resonators [J]. Optics Letters, 2004, 29 (7): 769-771.