版权所有 © 《激光技术》编辑部 http://www.jgjs.net.cn

第38卷 第3期	激	光	技	术	Vol. 38, No. 3
2014年5月	LAS	ER TEO	CHNOL	OGY	May,2014

文章编号: 1001-3806(2014)03-0398-04

激光后向散射法在测量湿蒸气中的应用研究

蔡 成¹,黄竹青^{1,2}*,曹小玲¹,焦 烨¹

(1. 长沙理工大学 能源与动力工程学院,长沙 410114; 2. 湖南有色金属职业技术学院,株洲 412006)

摘要:为了研究测量汽轮机内部湿蒸气特性,采用了基于后向激光散射法的测量新方法,得到不同角度不同 位置湿蒸气散射光强度数据,从而得出湿蒸气相关参量,并求得湿蒸气水滴质量中间半径为1µm 左右。结果表明, 无湿蒸气时的空白数据对湿蒸气方法也有影响,需要修正公式;无论有无湿蒸气,30°的散射光光强均为60°的散射 光光强的1.5倍左右,30°的散射光更明显适于测量。这一结果说明激光后向散射原理测量湿蒸气是可行的。

关键词: 散射;湿蒸气特性;激光后向散射;汽轮机

中图分类号: 0436.2 文献标志码: A doi:10.7510/jgjs.issn.1001-3806.2014.03.025

Application of laser backscattering method in wet steam measurement

CAI Cheng¹, HUANG Zhuqing^{1,2}, CAO Xiaoling¹, JIAO Ye¹

(1. School of Energy and Power Engineering, Changsha University of Science & Technology, Changsha 410114, China;2. Hunan Nonferrous Metals Vocational and Technical College, Zhuzhou 412006, China)

Abstract: In order to study the characteristics of the wet steam in steam turbine unit, the new measurement method based on laser backscattering method was proposed to get the data of scattering light intensity of the wet steam at different angles and at different locations. And then, the parameters of the wet steam were gotten and the middle radius of the wet steam droplets quality was about 1 μ m. The results show that the blank data of none wet steam also has the impact on the wet steam method, so the formula should be corrected. And no matter there is the wet steam or not, the scattered light intensity at 30° is about 1.5 times of the scattering light intensity at 60°, so the scattered light at 30° is more suitable for measurement. The results show that the backscattering theory is feasible for wet steam measurement.

Key words: scattering; wet steam feature; laser backscattering measurement; turbine

引 言

汽轮机是一种以蒸汽为工质,并将整齐的热能 转换为机械功的旋转机械,是现代电力和动力工程 中应用最为广泛的原动机。在汽轮机末级中,蒸汽 流动会出现蒸汽凝结产生水分形成湿蒸气这种现 象,对机组效率产生很大影响。在大型的汽轮机中, 湿蒸气流动问题带来的经济损失是很大的。而蒸汽 湿度大小及分布的准确确定,有助于了解湿蒸气区 级的工作状态,也为汽轮机的安全经济运行提供了 参考。所以湿蒸气相关参量的测量有很重要的理论

基金项目:湖南省高校创新平台资助项目(11K003); 湖南省科技厅重点基金资助项目(2011GK4005)

作者简介:蔡 成(1989-),男,硕士研究生,现主要从 事汽轮机故障诊断方面的研究。

* 通讯联系人。E-mail:huangzhuqing@ aliyun.com 收稿日期:2013-06-06;收到修改稿日期:2013-06-24

意义及实用价值^[1]。

针对现在各种测量湿蒸气的方法,本文中提出 运用光散射理论测量湿蒸气的方法,可以在线测量 湿蒸气湿度甚至水滴直径分布,而且由于在汽轮机 内光线可能受遮挡无法进行前向散射,本文中利用 后向散射的方法对模拟的汽轮机内部湿蒸气情况进 行测量,并进行分析处理。

1 激光散射原理

散射是指光线通过不均匀的介质而偏离其原来 的传播方向,散开到所有方向的现象,而在均匀介质 中光线将沿原有的方向传播而不发生散射现象^[2]。 但是如果在均匀介质中掺入一些不同折射率其它不 均匀物质粒子时,则均匀介质的均匀折射率就会遭 到破坏,这些不均匀的其它物质粒子就会引起光的 散射。而不同物质粒子产生不同的散射光,散射光 可以反映不同物质粒子的一些信息,例如颗粒大小、 浓度、分布等。利用散射光得出这些物质的信息就 必须运用光散射理论对散射光进行分析、处理^[3]。

而光的散射主要有两类:一类是散射光波矢量 变化而波长不变化,比如瑞利散射等;一类是散射光 波矢量和波长同时变化,比如喇曼散射等,如果粒子 的大小比入射光的波长小得多,通常产生瑞利散射, 散射光信号强度与 d^2/λ^2 成正比,其中 d 是粒子直 径, λ 是入射光的波长,然而当粒子直径可以和入射 光波长相比较甚至更大的时候,就不能用瑞利散射 来解释了,则称这时候的散射为 Mie 散射。根据 Mie 散射理论,可得以下公式^[45]:

$$E_{1} = \frac{\lambda^{2} I_{0}}{8\pi^{2}} = \int_{\alpha_{1}}^{\alpha_{2}} [i_{1}(\theta, \alpha) + i_{2}(\theta, \alpha)] f(\alpha) d\alpha \qquad (1)$$

式中, E_1 为散射光能量, λ 为入射光波长, I_0 为入射 光光强, θ 为散射角度, $f(\alpha)$ 为散射微粒分布函数, i_1 与 i_2 是 Mie 散射强度函数,分别表示平行和垂直偏 振方向上的 Mie 散射强度,(1)式表示从 α_1 到 α_2 处 的散射光强总能量, α 是指位置变量。而根据(1)式 可得距离与散射颗粒为 r 处的散射光强 I_1 为^[6]:

$$I_{1} = \frac{\lambda^{2} I_{0}}{8\pi^{2} r^{2}} [i_{1}(\theta) + i_{2}(\theta)] = \frac{I_{0}}{r^{2}} k \qquad (2)$$

式中,k 是单颗粒的散射系数,在散射颗粒密集区域,光线经过一个散射颗粒散射之后经过另一个散射颗粒的时候可能出现多次散射,但是在汽轮机较低浓度湿蒸气内,这种多次散射影响是可以忽略的^[78]。于是有 $I_1/I_0 = k/r^2$,即求得散射光强比值 I_1/I_0 之后,可得到散射颗粒系数即颗粒信息。又利用经典 Mie 理论可以求得 k 主要与散射角 θ 、入射光波长 λ 、水滴直径 D、水滴的相对折射率 n 和蒸汽湿度 Y 有关,即测得散射光强比值 I_1/I_0 之后,可获得水滴直径 D 与蒸汽湿度 Y 为未知数的方程,测得一系列的散射角光强比值即可反演得到蒸汽湿度 Y 和水滴直径 $D^{[9-10]}$ 。

假设 θ_0 处的散射光强为 $I(\theta_0), \theta$ 处的散射光 强为 $I(\theta), 则散射比K_1$ 为:

$$K_{1} = \frac{I(\theta)}{I(\theta_{0})} = \frac{f(\theta)}{f(\theta_{0})} =$$
$$\exp\left[-\beta^{2}(\theta^{2} - \theta_{0}^{2})\right]$$
(3)

在已知散射角 θ_0 和 θ 的散射光强比值的条件下,就可以根据式计算得到水滴的特征半径。其中

$$f(\theta) = f(\theta, \beta) = \frac{f_1 \beta^2}{\pi} \exp(-\beta^2 \theta^2)$$
为散射强度高斯函

数拟合, f_1 和 β 是拟合系数。

2 CCD 测量方法与实验装置

实验中将用电荷耦合器件(charge-coupled de-vice, CCD)来测量。

实验测量装置主要是如图1所示,由模拟气压 缸、激光器、CCD相机、减震实验台、傅里叶透镜和 计算机构成。

Fig. 1 Experiment system for laser measurement of wet steam

如图 1 所示,从单纵模连续输出可见光,而激光 抽运固体激光器(diode pumped solid-state laser, DPSSL)中输出 532nm 的 50MW 的激光通过衰减片 以防止 CCD 饱和,再射入模拟汽轮机湿蒸气装置 中,在湿蒸气环境下向各个方向进行散射,其中后向 散射光从装置孔射出来经过傅里叶透镜后用 CCD 相机内摄取光在湿蒸气内产生的后向散射光图像, 再将摄取的图像传送到计算机中进行图像分析和数 据处理,采用 MATLAB 进行图像分析和处理^[11]。

如图 2 所示是实验设备实物图,按截面分依次 为第一截面到第五截面的后向 0°、后向 30°、后向 60°以及后向 90°。

Fig. 2 Experiment setup

400

激 光 技 术

3 实验结果与分析

在波长 532nm 下通过不同工况、不同位置的湿 蒸气条件下,可以发现光散射图像也有明显的不 同^[12]。

首先固定位置测量不同工况下的散射图像,由 图3可知,测得图像主要是一条直线。

Fig. 3 a—laser backscatter images without wet steam b—laser backscatter images of 0. 24MPa changing wet steam c—laser backscatter images of 0. 44MPa changing wet steam d—laser backscatter images of 0. 44MPa stable wet steam

但是当湿蒸气装置内部没有湿蒸气时的空白图 像是清晰的细线(见图 3a),证明里面没有湿蒸气, 所以很清晰,几乎没有大颗粒所以散射光为细细的 一条直线,而且由于颗粒太少,直线散射图像没那么 亮,而孔壁的反射光就显得很亮呈半牙型,既然有图 案就说明空白数据对湿蒸汽测量有影响,需要考虑 其影响。

而当工况改变,内部有湿蒸气时,此时喷嘴前温 度从139℃到156℃变化,出口压力从0.24MPa到 0.44MPa变化,由图3b与图3c可知,光线的图像越 来越粗并且发散,因为其中湿蒸气越来越多,向各个 方向散射的也越来越明显,线越来越粗,圆形孔壁由 于被湿蒸气覆盖不是那么清晰可见,但是趋于稳态 时还是渐变清晰。

在工况稳定为出口压力为 0.44MPa、喷嘴温度 为 156℃湿蒸气饱和时,图像光柱很清晰集中,孔壁 也很明显,如图 3d 所示,此时湿蒸气很稳定饱和,利 于计算光强得到光散射强度。

而通过不同角度的散射光强可得散射光功率与 角度的关系,如图4所示。

Fig. 4 a—light intensity distribution curve at different angle on the fifth section b—light intensity distribution curve at different angle on the third section

图 4a 为第五截面的 30°与 60°散射光功率分布 曲线,由于光功率与光强是线性比例关系,所以光强 比值与光功率比值相等,故可以看到,30°与 60°散 射光强的趋势相似,30°的散射光强为 60°的 1.5 倍 多;图 4b 为第三截面的 30°与 60°散射光强,30°的 散射光强强度也约为 60°的 1.5 倍,不同距离的光 强度值趋势相似,但是没有第五截面那么明显,因为 第五截面靠近装置出口更稳定,第三截面湿蒸气流 动比较大,误差动态比较大。

图 5 所示分别为第五截面与第三截面的 30°散 射光功率值与 60°散射光功率值的比值,图 5a 显示 各个点的比值曲线以及平均比值,平均比值为 1.498;图 5b 显示第三截面平均比值为 1.573,根据 (2)式可知,30°的散射光强与 60°的散射光强比值 为 3:2,与实际基本相符合,再通过无湿蒸气时的空 白图像数据得出湿蒸气算法的修正公式,最后得到 湿蒸气浓度。

根据(3)式可得散射光强比值为 $f(\theta)$ 的比值, 即为 exp $[-\beta^2(\theta^2 - \theta_0^2)]$,经过拟合公式通过空白 数据修正之后可知:

$$\beta^{2}(\bar{r}) = 57.46 \bar{r}^{3} - 255.9 \bar{r}^{2} + 400.8 \bar{r} - 114.1 \qquad (4)$$

$$f_{1}(\bar{r}) = 447.5 \exp(-18.21 \bar{r}) + 0.4419 \exp(-0.03638 \bar{r}) \qquad (5)$$

版权所有 © 《激光技术》编辑部 http://www.jgjs.net.cn

第38卷 第3期

Fig. 5 a—ratio of light intensity distribution curve at different angle on the fifth section b—ratio of light intensity distribution curve at different angle on the third section

式中, r是水滴质量中间半径。代入(4)式、(5)式中 的参量以及将散射光强比值 3:2 代入到(3)式可求 得在背压 0.44 MPa下, 湿蒸气的水滴质量中间半径 为 1.2 µm; 在 0.24 MPa下, 水滴质量中间半径为 0.9 µm, 与汽轮机内部湿蒸气一次水滴半径范围 0.5 µm~2µm 的实际情况相符合, 也与数值模拟结 果相吻合得比较好。

经过实验研究发现,无湿蒸气时的空白数据对 湿蒸气测量也有影响,计算时要修正其公式;同时散 射角度的不同也会带来测量光散射强度的不同,对 于湿度的计算清晰地显示出 30°角散射更适于测 量。通过实验计算结果可知,根据光后向散射强度 是可以测得湿蒸汽水滴颗粒大小的特性。

4 结 论

通过实验研究表明,利用激光后向散射图像测 量光散射强度进而得到湿蒸气湿度的方法是可行 的,后向激光散射方式也更适用于汽轮机内部湿度 测量,因为汽轮机内部有内轴无法实现前向散射方 式,并且通过后向散射测得的图像也很明显,不会因 为是后向的导致散射光过少无法测得,根据图像可 知汽轮机内部湿蒸气分布情况,几乎没有湿蒸气时, 空白散射图像十分清晰明显,由于没有湿蒸气,向各 个方向散射的光很少,所以图像很集中,其它地方基 本是黑暗的,测量湿蒸气浓度时,必须考虑空白数据 的影响来修正(2)式;而湿蒸气浓度高的时候,图像 就有比较规则的光晕、毛刺,散射光充满整个图像, 每个点的灰度值都对应了其湿度值,进而可以得到 湿蒸气的参量。该方法具有在线实时测量的特点, 有望开发出新型的测量湿蒸气浓度的装置,使激光 后向散射图像技术及激光技术在能动发电方面有更 好的应用。

- [1] JIAO Y, HUANG Zh Q, CAO X L, et al. Simulation study on steam moisture measurement based on the method of optical back-scattering[J]. Laser Technology, 2013, 37(3):310-313 (in Chinese).
- [2] HUANG Zh Q, CAO X L, YANG J M, et al. Application of CCD in measuring steam moisture and droplet size [J]. Opto-Electronic Engineering, 2010, 37(4): 39-43 (in Chinese).
- [3] WANG F. Application study of the laser scattering theory for monitoring steam wetness and droplet size in steam turbines[D]. Changsha:Changsha University of Science & Technology, 2008:12 (in Chinese).
- [4] LI L F, ZHANG L, DONG L, et al. Experimental studyofthe concentration f soot basedon method of optical back-scattering [J]. Acta Photonica Sinica, 2006, 35(6):915-918 (in Chinese).
- [5] WANG Y R, FENG D Zh, ZHANG Zh J. Research on measuring the thickness of soot by scattered light[J]. Journal of Jinan University(Science Edition), 2001, 15(3):253-255(in Chinese).
- [6] ZHAO K H, ZHONG X H. Optic [M]. Beijing: Peking University Press, 1984:251-254 (in Chinese).
- [7] LIU J B, WU J. Analysis of angular spectrum of scattering intensity with particles for laser beam[J]. Optical Technique, 2005, 31(5): 659-661 (in Chinese).
- [8] WANG Zh Zh, CHI R L, LIU B, et al. Depolarization properties of cirrus clouds from polarization lidar measurements over Hefei in spring[J]. Chinese Optics Letters, 2008, 6(4):235-237.
- [9] CHEN W Z, LIU Y N, HUANG W, et al. Dynamics and measurement of cavitiation bubble [J]. Science in China, 2006, 49 (4): 385-395.
- [10] LABHART T, MEYER E P. Neural mechanisms in insect navigation:polarization compass and odometer [J]. Current Opinion in Neurobiology, 2002, 12(6):707-714.
- [11] WANG Q Y. Application technology of CCD[M]. Tianjin: Tianjin University Press, 2000:183-184(in Chinese).
- [12] ZHANG C H, ZHANG X J, ZHU D Zh, et al. Detection of chlorophyll content of wheat leaves based on laser scattering images
 [J]. Laser Technology, 2012, 36(4):459-462(in Chinese).