文章编号: 1001-3806(2013)01-0016-04

一种新型超宽带光电探测模块的研究

江 桓 吴华君 吴云峰

(电子科技大学光电信息学院,成都 610054)

摘要:为了满足光电探测系统的高速应用 采用了一种新型超宽带光电检测模块的设计方法 即在传统的光电转换 基础上联合现代微波集成电路技术 通过同时采集 PIN 光电二极管阴极和阳极光电流 ,用两组不同带宽范围的放大器放 大 最后用连续通带的双工器将信号合并 ,得到一种超宽带(直流~4GHz)、高响应度(4900V/W)的光电探测模块。结果 表明 .该方法不但获得了超宽带宽的光电探测模块 .还解决了常见高速光电检测模块无法检测直流甚至一些低频光信号 的问题。

关键词:光电子学;高速探测;宽带放大;双工器;直流 中图分类号:TN247 文献标识码:A doi:10.7510/jgjs.issn.1001-3806.2013.01.004

又瞅你识妈: A doi: 10.75107jgjs. issn. 1001-5806. 2013. 01. 004

A novel ultra-broadband photoelectric detection module

JIANG Huan , WU Hua-jun , WU Yun-feng

(School of Optoelectronic Information , University of Electronic Science & Technology of China , Chengdu 610054 , China)

Abstract: For the high-speed optoelectronic systems applications, a new method of design an ultra-broadband optical detection module was introduced. It combines the traditional photoelectric with modern monolithic microwave integrated circuit technology. By collecting the cathode and anode photo currents of the PIN photodiode simultaneously, they were amplified by two amplifier circuits with different bandwidth range. Finally, the two different channel signals were combined by a consecutive passband diplexer. As a result, an ultra-broadband(direct-current -4GHz) and high responsivity(4900V/W) photoelectric detection module was obtained. This module solves the problem that any direct-current signal even low low-frequency optical signal can't be detected in a common high-speed optical detection module.

Key words: optoelectronics; high-speed detection; broadband amplification; diplexer; direct-current

引 言

在冲击波和爆轰物理、激光雷达等众多瞬态光学 领域都需要对超高速超短脉冲光信号进行检测^[1-3]。 比如,用于冲击波和爆轰物理中的激光干涉测速系统, 系统测量的速度值与干涉条纹的频率成正比,要求系 统有快速的时间响应以及爆轰属瞬态过程,需要极高 的时间分辨率和极短的上升时间。在光电探测系统 中,对于系统带宽的测定一般通过系统响应的上升时 间来测定^[4]: $f_{-3dB} = (1/\tau_r) \times 0.35 \pi_r$,为上升时间。同 时在一些特殊应用中,比如测量状态存在低速信号,需 要光电检测模块不仅能响应高频信号,还能响应低频 甚至直流信号,而常见光电检测模块,受耦合电容以及 寄生参量的影响,低频截止频率往往达到了几十千赫 兹^[5]。而此类性能较好的直流光电探测器基本受国

作者简介: 江 桓(1987-),男,硕士研究生,现主要从事 光电测控与仪器的研究。

* 通讯联系人。E-mail: yfwu-72@163.com 收稿日期:2012-04-17;收到修改稿日期:2012-05-25 外垄断,比如 New Focus 的响应频率为 30kHz ~ 1GHz 的光电探测器价格约为 1200 美元,响应频率为直流 (direct-current,DC) ~ 1.1GHz 的价格约 3400 美元,因 此,对于此类光电探测技术的研究具有重要科研价值。

1 基本原理

一般超宽带放大电路中,受耦合电容以及电路偏 置电压等的影响,很难实现直流信号到高频信号的直 接放大,该方案通过同时采集 PIN 光电二极管阴极电 流和阳极电流并通过两组不同带宽的放大电路进行放 大,其原理图如图1所示。阴极的一端用高频放大电 路放大,先通过一个高频薄膜电阻实现电流-电压转 换,高频跨阻即为 R₁,再通过交流耦合到后续宽带低 噪声放大器进行进一步放大;阳极的一端用低频放大 电路放大,先由电流反馈运放用实现电流-电压转换, 低频跨阻为 R₁,且通过运算放大器的虚地给 PIN 光电 二极管提供直流接地,再直接耦合到高性能运算放大器 进行电压放大。最后由一个连续通带的双工器(DC ~ 800MHz 和 800MHz ~ 4GHz)将信号合并,以实现直

Fig.1 Schematic of ultra-wideband photoelectric conversion

流信号到高频信号的检测。

2 电路设计

2.1 探测器电路

对于高速光电探测,灵敏度与光敏面积有关,光敏 面积大,响应度高;然而,大的光敏面会产生更大的结 电容,从而限制光电探测器的带宽,本文中采用的探测 器可以通过偏置电压以减小其结电容,电源的纹波大 小也就成为非常重要的考虑因素,纹波的大小直接影 响到结电容的变化,从而在电路中引入噪声,因此,本 文中采用 Intel-lock 公司的高精度低纹波电源模块。 而一般光电探测器又存在几百兆欧姆到几千兆欧姆的 等效内阻 加偏置电压会产生暗电流,且暗电流的大小 与所加偏置电压成指数关系,因此,设计时需考虑偏置 电压值的选取。本方案选取的高速 PIN 光电探测器上 升时间为 47 ps,由此计算带宽约为 8 GHz,响应波段为 400 nm ~ 1100 nm,在偏置电压 $V_{\rm bias}$ = 10V 时,结电容 $C_{\rm d}$ = 0.5 pF。

2.2 低频放大及直流漂移校正

低频放大由一个电流反馈运放而不是传统的电压 反馈运放做电流-电压转换,后经主放大器将信号进一 步放大以实现直流及低频信号的放大。光电二极管在 加偏置电压的情况下会产生暗电流,同时运放的同相 和反相输入端口都存在一定的输入偏置电流,这两种 "噪声电流"都会在输出端口产生直流漂移,会限制直 流信号放大的实现,即使无光信号进入 PIN 光电二极 管,也会在输出端检测到直流电压。为此,设计了如图 2 所示的直流漂移校正电路,图中 I_{b+} 和 I_{b-} 分别为运 放的同相、反相输入偏置电流 i_p 为 PIN 光电二极管在 入射光功率下的电流响应 I_d 为 PIN 光电二极管的暗 电流,在运放输出级检测到的总信号电压为^[6]:

 $E_{o} = I_{b-}R_{c} - I_{b+}R_{f} + (i_{p} + I_{d})R_{f}$ (1) 为了进行直流校正 需要满足:

$$I_{\rm b-}R_{\rm c} - I_{\rm b+}R_{\rm f} + I_{\rm d}R_{\rm f} = 0$$
 (2)

同时,为了提高校正精度,*R*,用T形网络的3个微调 电阻*R*₁,*R*₂和*R*₃来等效,满足*R*₁>>*R*₂>>*R*₃,得:

Fig. 2 Schematic of T-corrected circuits

 $R_{\rm f} = R_1 + R_2 + R_1 (R_3/R_2) \approx R_1 (1 + R_3/R_2)$

取运放同相端校正电阻 $R_c = R_1$,于是可以通过调 节 R_2 和 R_3 的值来精确校正输出的直流漂移,同时在 R_c 再接一个旁路电容,这样可以减小来自 R_c 的电阻 热噪声。

电流反馈运放用作光电二极管放大时,反馈电阻 *R*_f不能选得太大,因为反馈的大小直接决定电路的带 宽响应,X 取值必须考虑运放输入时间常数对带宽的 影响,其取值可由下式确定:

$$f = \frac{f_{\rm u}}{\sqrt{2\pi R_{\rm f} C_{\rm in}}} \tag{3}$$

式中 f 为 *I*-V 转换电路的带宽 f_u 为所选运放的单位 增益带宽 C_{in} 为运放输入电容 ,包括 PIN 光电二极管 结电容和运放输入端口的寄生电容。综上所述 ,选取 THS3202 作为跨阻放大器 ,取 *I*-V 转换电路的带宽为 1000MHz 时 ,由(1) 式、(2) 式和(3) 式得出 $R_f = R_c \approx$ 800 Ω ,可知 $R_1 = 630\Omega$, $R_2 = 100\Omega$, $R_3 = 10\Omega$ 。主放大 电路采用两级固定增益 2. 4GHz 宽带运放 THS4302 进 行进一步放大 ,获得 28dB 电压增益。

2.3 高频放大电路

高频放大模块,电流信号采样通过一个电阻 *R*₁ 实现跨阻放大,其结构如图 3 所示,为了减小寄生效应, 采用了高频薄膜电阻,虽然在一般微弱信号检测电路 中,总是希望负载 *R*₁ 越大越好,以提高系统灵敏度,但 是高速应用中,由于大的 *R*₁ 会与 PIN 的结电容形成较

长的充放电时间而限制其响应速度 因此该 R₁ 的取值 需满足下式:

$$f_{\rm c} = \frac{1}{2\pi C_{\rm s} R_{\rm s}} \tag{4}$$

式中 f_c 为运放的 – 3dB 带宽 C_d 为 PIN 光电二极管 的极间结电容 计算出 $R_1 \approx 400 \Omega_o$

将电流信号转换成电压信号后,由宽带低噪声放 大电路进行进一步放大,该放大电路的设计主要考虑 其稳定性、增益、反射、增益平坦度以及噪声大小,在放 大器输入部分按最佳噪声匹配,输出用最佳功率匹配 到 50Ω,选用 AVT-50663 作为放大器件,通过两级放 大获得 24dB 的增益以及 50MHz ~ 5GHz 内小于 1dB 的增益平坦度,对于低噪声放大器的研制技术现在已 经相当成熟^[7-8],这里就不再赘述。

2.4 连续通带的双工设计

双工器是这样一种三端口器件,它能够将一个相 对较宽的频带分为两个频带并分别从两个端口输 出^[9],或者将两个不同频带的信号合成在一起输出而 不互相干扰。本文中采用高低通滤波器并联并添加消 纳电路来获得通带连续的双工滤波器,使双工滤波器 输入端在全频谱上完全匹配^[10]: $Y_t = Y_1 + Y_h = Y_s$,即: Re $Y_t = \operatorname{Re}Y_h + \operatorname{Re}Y_1 = Y_s$,Im $Y_t = 0$, Y_t , Y_1 , Y_h , Y_s 分别为 输入总导纳、低通输入导纳、高通输入导纳和源导纳, Re Y_t ,Re Y_1 和 Re Y_h 分别为取其复数的实部。若所有 的输入导纳都对源导纳 Y_s 归一化,则 Y_t 的归一化值 等于1。基于方案需求,低通滤波器和高通滤波器的 -3dB 截止频率均设置为800MHz,低通滤波器合个集 总参量元件的值为: $C_1 = 2.4 \mathrm{pF}$, $L_2 = 5.1 \mathrm{nH}$, $C_3 = 4.05 \mathrm{pF}$ 。高通滤波器各集总参量元件值为: $L_1 = 10 \mathrm{nH}$, $L_2 = 3.9 \mathrm{nH}$, $C_3 = 3.2 \mathrm{pF}$, $L_4 = 2.3 \mathrm{nH}$ 。

用微带和悬置微带结合的新型结构,采用 Rogers RO4350 基板 板厚 h = 0.508 mm,并根据悬置微带滤 波器实现公式^[11-42]: $C_p = \varepsilon S/h$, $L = Z_1 l_1 / (f \lambda_g)$, ε 为基 板介电常数 S 为电容耦合面积 h 为基板厚度 Z_1 为 微带电感特征阻抗 l_1 为微带电感的长度,通过公式计 算出的尺寸仅仅是作为实际器件的一个最优近似,并 且传输线的突变以及 T 型结等处都存在寄生效应,需 要用电磁场仿真软件进行优化。低通滤波器各集总元 件分别对应的尺寸: 0.2 mm × 19 mm ρ .2 mm × 0.4 mm , 10 mm × 19 mm ρ .2 mm × 4.3 mm。高通滤波器各集总 元件分别对应的尺寸: 6 mm × 6.5 mm ρ .2 mm × 8 mm , 6 mm × 11.5 mm。用 HFSS 软件调谐及优化后,得到其 3 维模型和仿真结果如图 4 和图 5 所示,低通滤波器 DC ~ 800 MHz 高通滤波器 800 MHz ~ 4 GHz。

2.5 系统调试和组装

综上所述,由光电转换模块响应度公式: $V_0 = R(\lambda) \times P_0 \times R_1 \times G R(\lambda)$ 为探测器的响应度, P_0 为入 射光功率 R_1 为总跨阻,G为主放大增益,计算出低频 放大模块的响应度 $R_{esp}(L) = 7960V/W$,高频放大模 块的响应度 $R_{esp}(H) = 4935V/W$,为了在整个频带获 得平坦的增益,在低频放大模块输出端口加入了4dB 衰减器,使两路放大模块的增益匹配。

由于该方案的带宽高,需考虑各个模块间信号走 线的长度以及特征阻抗,为了防止各个模块间的信号 相互干扰,在尽量减小走线长度的同时,用金属挡板对 各个模块进行隔离。

3 测试结果

对于低频响应信号测试,通过由信号发生器调制 的激光二极管来做信号源,用 RIGOL 公司的 DS1102E 型示波器直接测试。图 6 和图 7 分别为激光二极管的 输出光功率为 $P_0 = 30 \mu$ W 时的测试结果,输出的电压 平均幅值为 152mV,且无直流漂移,与理论吻合,噪声 低无失真。

Fig. 6 Results of low-frequency response (f = 10 Hz)

Fig. 7 Results of low-frequency response (f = 5 MHz)

对于模块的高频响应测试,无法通过常规的示波器检测手段。一般信号发生器的脉冲发生频率限制在 几十兆赫兹,其次常规的激光二极管在高频的电信号 驱动下会出现失真,会对检测造成一定误差。因此,采 用英国 Fianium 公司的 523nm 飞秒激光器做信号源, 它能产生 9ps 上升时间的尖脉冲。

为了防止示波器探头寄生电容的影响,用高性能 的同轴线缆直接和示波器接口连接,并将示波器接口 设置为50Ω,高频响应测试结果如图8所示,设置激光 输出功率为46μW,通过反复测量确定平均上升时间 为81ps,带宽约为4GHz,测得的平均电压幅度为 228mV,也与理论吻合,且噪声低波形稳定,增益与低 频响应一致,达到预期的目标。

利用高速 PIN 光电二极管并联合微波集成电路技 术获得了一种超宽带光电探测模块,并通过实验验证 了这种方案的可实现性,该方案的突出特点是测试动

4

结

态范围宽(DC~4GHz),可以直接检测直流信号,并有 4930V/W的高响应度,相比国外同类产品,具有成本 低、体积小等优点,这对脉冲激光雷达以及光纤干涉测 速等实际应用具有重要意义。

参考文献

- [1] WANG D T ,PENG Q X ,LIU J *et al.* Application of laser velocity interferometry in interior ballistic projectile velocity measurement [J]. Chinese Journal of High Pressure Physics 2011 ,25(2):133-136(in Chinese).
- [2] LIU B ,WU Y F ,ZHAO X C. Detecting techniques research of weak optical signal [J]. Laser Technology , 2012 ,36(2): 251-254(in Chinese).
- [3] GUO J Ch ZUO Y H ,WANG Q M. Development of high-speed , highoutput-photocurrent 1. 55 μm photodetector and its application in optical-controlled phased array antenna [J]. China Integrated Circuit , 2008 9(12):18-26(in Chinese).
- [4] GAO J J. High speed onto be provided integrated circuit design [M]. Beijug: Higher Education Press 2009: 82-89(in Chinese).
- [5] WANG X P, HEA, LI J X et al. Velocity test by fiber laser interferometer [J] Journal of Southeast University 2009, 39(2): 60-64(in Chinese).
- [6] GRARME J G. Photo diode amplifier [M]. New York , USA: McGraw-Hill Companies , 1996: 22-29.
- LIU F L ,SHUN L J ,BAI Y Ch ,et al. Research and design of high speed ultra-wideband photoreceiver module [J]. Semiconductor Optoe– lectronics 2007 28(3):414-416(in Chinese).
- [8] GAO Ch Zh ,HE J H ,FU L X. Series microwave broadband amplifier [J]. Design and Development of IC 2010 35(8): 845-847(in Chinese).
- [9] MACCHIARELLA G, TANMIAZZO S. Novel approach to synthesis of microwave diplexer [J]. IEE Transactions on Microwave Theory and Tecniques 2006, 54(12): 4281-4289.
- [10] YANG T, CHI P L, ITOH T. High isolation and compact diplexer using the hybird resonators [J]. IEEE Microwave and Wireless Components Letters 2010 20(10):551-553.
- [11] FOOKS E H , ZAKAREVICIUS R A. Microwave engineering using microstrip circuits [M]. New York , USA: Prentice Hall ,1998: 99– 115.
- [12] YASUZUMII T, UWANO T, HAHIMOTO O. Microstrip high-pass filter with attenuation poles using cross-coupling [J]. Proceedings of Asia-Pacific Microwave Conference 2010, 7(10):107-110.