文章编号: 1001-3806(2012)06-0749-05

不同环境压强下激光空泡溃灭射流的实验研究

李贝贝 张宏超 倪晓武 陆 建^{*}

(南京理工大学理学院信息物理与工程系南京210094)

摘要:为了研究环境压强对固壁面附近激光空泡溃灭射流的影响,采用光偏转方法对固体壁面附近空泡溃灭行为 进行了实验研究,得到了不同环境压强下空泡的溃灭时间、溃灭射流冲击压强。结果表明,相同激光能量下,环境压强对 空泡溃灭时间、射流冲击压强都有非线性的影响关系,环境压强越大,溃灭时间越小,射流冲击压强越大;在空泡溃灭的 前期,泡壁加速率较小且受环境压强的影响较小;在溃灭的后期,射流形成,空泡上表面泡壁中心点速率迅速增大,且相 应阶段的加速率随着环境压强的增大而增大。这一结果对激光水下加工及空泡动力学的研究有积极的意义。

关键词: 激光物理; 激光空泡; 光偏转法; 液体射流; 水锤

中图分类号: 0434.14 文献标识码: A doi: 10.3969/j.issn. 1001-3806.2012.06.010

Experiment investigation on the liquid jet of laser-induced bubble in different ambient pressures

LI Bei-bei , ZHANG Hong-chao , NI Xiao-wu , LU Jian

(Department of Information Physics and Engineering , School of Science , Naning University of Science and Technology , Nanjing 210094 , China)

Abstract: In order to study effect of ambient pressure on the liquid jet of laser-induced bubbles , the collapse time and the water hammer pressure of the liquid jet were obtained after studying the collapse action of the bubbles by means of a fiber-optic diagnostic technique based on probe beam deflection (PBD) in experiments. The data indicate that the collapse time decreases nonlinearly with the ambient pressure increasing , and the water hammer pressure increases nonlinearly with the ambient pressure increasing , and the water hammer pressure increases nonlinearly with the ambient pressure increasing , the acceleration of the bubble wall and the effect of the ambient pressure on the acceleration are very small; at the final stage of the collapse stage , the velocity of the center of the top bubble wall increases very quickly , and the acceleration increases with the ambient pressure increasing at the same stage. It's helpful to underwater laser processing and study about cavitation bubble dynamics.

Key words: laser physics; laser induced bubble; optical beam deflection; liquid jet; water hammer

引 言

空泡是发生在液体中的一种特殊物理现象,它发 生于液体局部压强低于当地环境温度下的饱和蒸气压 时^[1-2]。空泡一旦形成,就会在内外压力梯度的作用下 膨胀和收缩,并对其所处的环境产生显著的影响,如改 变液体的连续性致使机械的运行效率降低,辐射空化 噪声降低水下隐身武器的隐身效果^[3];特别是空泡溃 灭时形成的高温高压及高速液体射流在工程界有着广 泛的影响及应用,如发生在螺旋桨、水泵、喷嘴等流体

基金项目:南京理工大学自主科研专项计划资助项目 (2010ZDJH09)

作者简介: 李贝贝(1984), 男,博士研究生,现主要从事 激光与材料物质相互作用的研究。

* 通讯联系人。E-mail: lj6805@163.com

收稿日期: 2012-02-29; 收到修改稿日期: 2012-04-05

机械中的空蚀现象,以及应用于材料表面清洗、粉碎生物体内结石等^[1,4-5]。

在空泡的实验研究中,产生空泡的主要方法有电 火花、超声波、激光脉冲^[6-9]。现代实验中最常用的方 法就是激光脉冲产生空泡的方法,因为这种方法容易 控制空泡产生的位置和时间,且具有高度的球对称性。 主要的光学测试方法有:高速摄影术、条纹摄影术、阴 影摄影术、米散射法以及基于光偏转原理的光偏转方 法^[9-3],同样还有作为辅助探测手段的水听器探测冲 击波辐射的方法以及采用压力传感器聚偏氟乙烯 (polyvinylidene fluoride,PVDF)或压电陶瓷(piezoelectric transducer,PZT)推算出液体射流作用力^[14-45]。它 们的主要区别在于:条纹摄影术、阴影摄影术可以在一 次测量中完成某时刻空泡的2维探测,同时可以获取 射流速率,但是该类方法所使用的设备都是比较昂贵; PVDF 压力传感器测试属于一种有损检测方法,并且 频响带宽有限;而光偏转法则是获取空泡某一空间点 处的动力学行为,通过信号波形可以提取到空泡膨胀、 溃灭和冲击波辐射的信息,且可以非接触地直接测量 固壁面在任意时刻所受的瞬态力。

空泡的动力学行为受到诸多因素的影响,如液体的粘性、张力、可压缩性、热传导、物质扩散以及环境压强等^[16-9]。特别是环境压强对空泡的溃灭时间、最大泡半径、单空泡声致发光等都有明显影响,如 KON-DIC^[20]和 DAN^[6]等人在环境压强对单空泡声致发光 的影响的研究中,从某些方面讨论了环境压强对空泡 动力学的影响; LU^[7]研究了 0.1MPa ~ 10MPa 情况下 电火花泡的脉动行为及冲击波的峰值压强。但是这些 研究都没有就环境压强对空泡溃灭射流的影响加以详 细探讨。本文中采用基于光偏转原理的光纤耦合光束 偏转方法,探测液体射流冲击靶材时产生的瞬态冲击 力利用这一测试手段获取到不同激光能量及不同环 境压强下的固体边界附近激光空泡溃灭射流所导致的 光偏转信号,通过分析光偏转信号以讨论研究环境压 强对激光空泡溃灭射流的影响。

1 实验装置及溃灭射流的探测

1.1 实验装置

图 1 是空泡产生及探测系统的装置图。空泡产生 与控制部分由组件 1 ~ 组件 7 组成: 固体调 *Q* 激光器 1 发出的激光脉冲(λ = 1.06μm, 脉宽 10ns) 经衰减片组 2、扩束准直透镜组 3 ,最终由聚集透镜 4(*f*₁ = 60mm) 聚焦于放置在水中的铜靶材 7 的表面,形成光学击穿

Fig. 1 Sketch of experimental setup ,1—Q-switched Nd:YAG laser($\lambda = 1.06 \mu m$, pulse duration 10ns); 2—attenuator group; 3—expanded and collimated beam lens combination; 4—convex lens(f = 60 mm); 5—pressure vessel (120mm × 120mm × 120mm); 6—pressure-hand-ling system fitted a pressure gauge (Leierda YB-I50B with an accuracy grade of 0.25); 7—copper target and target holder; 8—He-Ne laser(power 5mW, $\lambda = 0.63 \mu m$); 9—convex lens(f = 80 mm); 10—beam splitter; 11—microscope objective ($20 \times , f = 4 mm$); 12—interference filter($\lambda = 0.63 \mu m$); 13—five-dimension fiber-regulating stand(0.1 μm spatial resolution); 14—single-mode optical fiber and photomultiplier(Hamamatsu H5773 with 2ns rise time); 15—digital oscilloscope(Tektronix THS730A); 16—DG535 digital delay/pulse generator; 17—computer

并产生空泡。这里,衰减片组2用来在不改变激光空间分布的条件下改变激光能量;扩束准直透镜组3用 来增大聚焦至靶材上的光束的会聚角,以降低发生激 光水下多等离子击穿的概率和保持空泡的球形形状及 其产生位置。为了研究不同环境压强中的空泡动力学 行为,铜靶材放置于一个充满蒸馏水并带有光学窗口 的压力器容器5(120mm×120mm×120mm)中,水面 静压力通过连接到压力容器的一个装有压力表(Leierda YB-150B,量程0MPa~0.6MPa,精度等级0.25)的 压力控制系统6控制和测量。需要强调的是:激光脉 冲的入射方向垂直于靶材表面;靶材厚度为0.2mm 且 在脉冲激光入射的一面经过简单的平整处理以减小靶 材对空泡运动的影响;实验的时间尺度远远小于气体 扩散的时间,所以在实验中认为空泡区域附近的气体 浓度不发生变化。

光偏转探测系统由组件 8~组件 15 组成: He-Ne 激光器 8 发出的激光束(功率 5 mW, $\lambda = 0.63 \mu \text{m}$) 经 聚焦透镜 9(f, 280mm) 聚焦至铜靶材背面对心处(样 品激发点的中心垂直正对面为对心点) 靶材的反射光 经分光片 10 反射并最终由一个 20 倍的显微物镜 11 耦 合进安装在具有 0. 1μm 调节精度的 5 维光纤调节架上 的单模光纤 13 中 ,从光纤中出来的光信号被导入到光 电倍增管 14(Hamamatsu H5773 ,上升时间 2ns) 中转换 成电信号输出,并被数字示波器15(Tektronix THS730A) 输出和记录波形。这里 He-Ne 激光束垂直 入射到靶材表面 且靶材在探测光入射的一面经过镜面 抛光处理 以提高靶材表面的反射率从而提高探测信号 的信噪比。单模光纤替代光阑作为位置敏感器件。同 时为了提高探测信号的信噪比 还放置一个窄带干涉滤 波片12(λ = 0.63μm) 于光纤前面以阻止其它杂散光进 入光纤。实验中空泡产生系统和光偏转探测系统都由 DG535 数字延时脉冲发生器 16 协调触发,示波器获取 的光偏转信号最终由计算机记录并存储。

1.2 溃灭射流的探测

当足够强的脉冲激光作用到水下靶材表面时,就 会在作用区内产生光学击穿,从而演化出等激光离子 体以及激光空泡^[5 & 9, 13 21]。特别是因为靶材的存在, 会致使空泡溃灭过程中形成不平衡的压力分布,从而 使空泡的形状偏离球形并最终形成指向靶材的高速液 体射流^[12]。当高速液体射流冲击到靶材表面时,在靶 材背面的对心处会形成微小锥形凸起。在弹性形变的 情况下,该处的微位移同射流冲击力成正比关 系^[22-24]:

$$d = kF \tag{1}$$

式中 / 为靶材背面的微位移 / 为常数 , F 为垂直作用

于靶材的射流冲击力。因此照射到该处凸起的探测光 发生偏折,并最终由光电探测设备接收并输出信号。 通过 XU 和 CHEN^[22-24]等人的工作可知,光电探测设 备输出的信号电压同射流冲击力成正比关系,即:

$$U = KF \tag{2}$$

式中 U 为光电探测设备输出的信号电压值 F 为射流 冲击力 K 为定标参量。在测试过程中 ,为了获得最佳 效果 ,应首先调节光纤使耦合光通量最大 ,这可以通过 观察示波器中直流信号的输出而实现。如图 2 所示的 典型信号图 图中峰值 a 为激光等离子体产生的烧蚀压 力脉冲引起的光偏转电压信号 ,峰值 b 为空泡在靶材附 近溃灭时形成的高速液体射流冲击力引起的光偏转电压 信号。分析图 2 中的两个脉冲峰 ,可以轻松地得到空泡 的溃灭时间 $2T_c = 171 \mu s$ (两峰之间的时间间隔 T_c 为空泡 的溃灭时间) 及溃灭射流冲击力的相对值(即空泡溃灭射 流冲击靶材时产生的光偏转电压信号) U = 272 m V。

2 结果分析

2.1 空泡溃灭时间及射流速率

在固体壁面附近溃灭的空泡最终会因为非均匀压 力梯度的影响而发展成为不对称的形状,一般都会在 空泡与边界对立的泡壁上形成中心凹入形状,并最终 发育成为高速液体射流。液体射流的强度不同程度地 受到液体粘性、表面张力、环境压强等参量的影响,本 文中的光偏转方法从环境压强的角度讨论液体射流的 特征参量。实验中以 0.05MPa 的步长改变环境压强 (Δp_{ambient} = 0.05 MPa) ,分别获取了激光能量为 44.4 mJ 下的空泡溃灭时间;同时为了分析空泡溃灭射流速率 的演化过程 采用有限体积法及流体体积法(volume of fluid, VOF) 界面追踪方法完成了该能量下空泡溃灭 过程的仿真^[25]。如图 3 所示的空泡溃灭时间的实验 值及数值计算值 图 4 所示的通过数值仿真得到的空 泡上表面泡壁中心点速率的演化曲线。图 3 中"■" 为数值仿真结果,"〇"为实验数据值,且图中数据指 出空泡溃灭时间的实验值和数值仿真结果具有非常好

Yig. 4 Velocity of the top wall center of the bubble 的一致性。空泡的溃灭时间随着环境压强的增大而非 线性减小,且当环境压强从0.1MPa 增大到0.35MPa 时,空泡的溃灭时间减小至原来的33.5%。图4 中空 泡上表面泡壁中心点速率变化曲线指出射流冲击到靶 材时的速率随着环境压强的增大而增大;在空泡溃灭 的初期泡壁加速比较小,且环境压强对其加速率影响 的变化不明显;在空泡溃灭的后期,射流开始形成,上 表面泡壁中心点的速率迅速增加,且环境压强越大相 应阶段的加速度也越大。

2.2 射流冲击强度

为了讨论环境压强对射流冲击强度的影响,采用 光偏转方法分别获取了激光能量分别为44.4mJ, 46.6mJ,49.0mJ,51.8mJ,55.4mJ和58.0mJ时,不同 环境压强下的空泡溃灭射流冲击靶材所产生的光偏转 电压信号(射流冲击力的相对值),如图5所示。

冲击力随着环境压强的增大而非线性增大,如激光能 量为44.4mJ时,环境压强从0.1MPa增大到 0.35MPa 射流冲击力的相对值由29.8mV增大到 58.4mV;同一环境压强下,空泡射流冲击力随着激光 能量的增大而增大如环境压强为0.1MPa时,激光能 量从44.4mJ增大到58.0mJ时,射流冲击力的相对值 由29.8mV增大到110.9mV;不同的激光能量下,环境 压强对空泡溃灭射流的影响效果是一致的。考虑到通 常高速射流的半径为空泡初始泡半径的1/10,根据对 激光能量为44.4mJ时不同环境压强下的空泡溃灭过 程的数值计算结果及流体的水锤压强公式(见下 式)^[26-27],可以得出射流冲击力的值,代入(2)式可以 得到定标参量*K*的算术平均值为6.23376。

$$p = \frac{\rho_1 c_1 \rho_2 c_2}{(\rho_1 c_1 + \rho_2 c_2) v_j}$$
(3)

式中 p 为射流冲击压强值 $\rho_1 \rho_2$ 分别为蒸馏水和铜 靶材的密度 $c_1 c_2$ 分别为蒸馏水和铜靶材中声速 v_j 为液体射流冲击速率。由此,可以通过实验获取的射 流冲击力相对值计算得到真实射流冲击压强,如表 1 所示。表中数据指出射流冲击压强随着环境的增大而 增大 随着激光能量的增大而增大。环境压强介于 0.1MPa~0.35MPa,激光能量介于 44.4mJ~58.0mJ 之间 高速液体射流的冲击压强均在 100MPa 的量级。 因此 高速射流是造成材料表面损伤和侵蚀的不可忽 略的因素。

Table 1 Water I	nammer pr	essure in o	lifferent an	nbient pro	essure and	laser en	
ergy/M	Pa		XID				
ambient		laser energy/mJ					
pressure/MPa	44.4	46.6	49.0	51.8	55.4	58.0	
0.1	186	306	399	494	594	692	
0.15	241	338	451	544	619	727	
0.2	291	384	478	579	663	783	
0.25	320	392	488	597	685	783	
0.3	318	425	536	629	710	819	
0.35	364	461	560	635	754	838	

3 结 论

采用光偏转方法及数值仿真的方法研究了不同环 境压强下固壁面附近激光空泡溃灭的动力学行为。空 泡的溃灭时间随着环境压强的增大而非线性减小。在 空泡溃灭的初期,空泡上表面泡壁中心点的加速度较 小;到了溃灭后期,溃灭射流开始形成,上表面中心点 的速度迅速增大,且相应阶段的加速度随着环境压强 的增大而增大。在激光能量 $E \in [44.4 \text{mJ}, 58.0 \text{mJ}]且$ 环境压强 $p_{\text{anbient}} \in [0.1 \text{MPa}, 0.35 \text{MPa}]$ 的条件下,激 光能量相同,则溃灭射流冲击靶材的强度随着环境压 强的增大而非线性增大,且射流冲击强度的值均在 100MPa的量级。这一研究对激光水下加工、空化与空 蚀的研究提供参考。

参考文献

- BRENNEN C E. Cavitation and bubble dynamics [M]. London: Oxford University Press, 1995: 1-50.
- [2] LAUTERBORN W, KURZ T. Physics of bubble oscillations [J]. Reports on Progress in Physics, 2010, 73 (10): 106501.
- [3] LI Sh Y , HU Sh L , LIU X Y , et al. Spectrum properties of laser-induced cavitation bubble collapse sound waves [J]. Laser Technology , 2007 31(3):281-284(in Chinese).
- [4] SONG W D , HONG M H , LUKYANCHUK B , et al. Laser-induced cavitation bubbles for cleaning of solid surfaces [J]. Journal of Applied Physics 2004 95(6): 2952-2956.
- [5] ZHAO R, XU R Q, SHEN Zh H, et al. Experimental investigation of the collapse of laser-generated cavitation bubbles near a solid boundary [J]. Optics & Laser Technology, 2007, 39(5): 968-972.
- [6] DAN M, CHEEKE J D N, KONDIC L. Ambient pressure effect on single-bubble sonohuminescence [J]. Physical Review Letters ,1999, 83(9): 1870.
 [7] LU X P, LIU M H, JIANG Zh H, et al. Effects of ambient pressure
- [7] LU X P, LIU M R, JIANG Zh H, et al. Effects of ambient pressure on bubble characteristics [J]. Chinese Physics Letters, 2002, 19 (5): 704-706.
- [8] CRECORČIČ P, PETKOVŠEK R, MOŽINA J. Investigation of a caviation bubble between a rigid boundary and a free surface [J]. Journal of Applied Physics, 2007, 102(9): 094904.
- PETKOVŠEK R, GREGORČIČ P. A laser probe measurement of cavitation bubble dynamics improved by shock wave detection and compared to shadow photography [J]. Journal of Applied Physics, 2007, 102(4): 044909.
- [10] GLYNN H R , CRUM L A. Mie scattering used to determine spherical bubble oscillations [J]. Applied Optics ,1990 ,29 (28): 4182– 4191.
- [11] VOGEL A, APITZ I, FREIDANK S, et al. Sensitive high-resolution white-light schlieren technique with a large dynamic range for the investigation of ablation dynamics [J]. Optics Letters, 2006, 31 (12): 1812-1814.
- [12] BRUJAN E A , KEEN G S , VOGEL A , et al. The final stage of the collapse of a cavitation bubble close to a rigid boundary [J]. Physics of Fluids , 2002 , 14(1): 85-92.
- [13] CHEN X , XU R Q , CHEN J P , et al. Shock-wave propagation and cavitation bubble oscillation by Nd:YAG laser ablation of a metal in water[J]. Applied Optics , 2004 , 43(16) : 3251-3257.
- [14] ZHAO R , LIANG Zh Ch , XU R Q , et al. Dynamics of laser-induced cavitation bubble near solid boundary [J]. Japanese Journal of Applied Physics , 2008 , 47(7): 5482-5485.
- [15] SHAW S J , SCHIFFERS W P , GENTRY T P , et al. The interaction of a laser-generated cavity with a solid boundary [J]. The Journal of the Acoustical Society of America , 2000 ,107(6) : 3065.
- [16] LIU X M, HE J, LU J, et al. Growth and collapse of laser-induced bubbles in glycerol-water mixtures [J]. Chinese Physics 2008 ,B17 (7): 2574-2579.
- [17] LIU X M, HE J, LU J, et al. Effect of surface tension on a liquidjet produced by the collapse of a laser-induced bubble against a rigid boundary [J]. Optics & Laser Technology, 2009, 41(1): 21-24.
- [18] AKHATOV I, LINDAU O, TOPOLNIKOV A, et al. Collapse and rebound of a laser-induced cavitation bubble [J]. Physics of Fluids,

2001 ,13(10): 2805-2819.

- [19] LI B B , ZHANG H Ch , LU J , et al. Experimental investigation of the effect of ambient pressure on laser-induced bubble dynamics [J]. Optics & Laser Technology , 2011 , 43(8): 1499-1503.
- [20] KONDIC L , YUAN C , CHAN C K. Ambient pressure and singlebubble sonoluminescence [J]. Physical Review ,1998 ,E57 (1): R32.
- [21] NI X W , CHEN X , LU J. Study on the mechanism of interaction between Laser and liquid material [J]. Laser Technology , 2002 , 26 (4): 258-261(in Chinese).
- [22] XU R Q, CHEN X, SHEN Zh H, et al. A fiber-optic diagnostic technique for mechanical detection of the laser-metal interaction underwater[J]. Physics of Fluids 2004 ,16(3): 832-835.
- [23] XU R Q, CHEN X, SHEN Zh H, et al. Dynamics of laser-induced cavitation bubbles near solid boundaries [J]. Acta Physica Sinica,

2004 53(5): 1413-1418(in Chinese).

- [24] CHEN X , XU R Q , SHEN Zh H , et al. Optical investigation of cavitation erosion by laser-induced bubble collapse [J]. Optics & Laser Technology , 2004 , 36(3): 197-203.
- [25] LUO J, LI J, DONG G N. Two-dimensional simulation of the collapse of vapor bubbles near a wall [J]. Journal of Fluids Engineering 2008 ,130(9): 091301-091304.
- [26] PHILIPP A , LAUTERBORN W. Cavitation erosion by single laserproduced bubbles [J]. Journal of Fluid Mechanics ,1998 ,361(1): 75-116.
- [27] XU R Q , ZHAO R , CUI Y P , et al. Investigation of cavitation bubble dynamics by fiber-coupling optical beam deflection technique [J]. Microwave and Optical Technology Letters , 2008 , 50 (7): 1767-1770.

WHAT THE C