文章编号: 1001-3806(2011)01-0015-04

Eu³⁺,Li⁺ 共掺杂 ZnO 薄膜结构与发光性质的研究

解晓君1,李清山1.2*,董艳锋1,赵 涛1

(1. 曲阜师范大学物理工程学院, 曲阜 273165; 2. 鲁东大学物理学院, 烟台 264025)

摘要:为了研究 Eu³⁺,Li⁺共掺杂的 ZnO 薄膜结构与发光性质,采用脉冲激光沉积方法在 P 型单晶 Si(111)衬底上 制备了 Eu³⁺,Li⁺共掺杂的 ZnO 薄膜,其中, Eu³⁺作为发光中心,而 Li⁺作为低价电荷的补偿离子和发光敏化剂。分别对 样品进行了 X 射线衍射谱测试和光致发光谱分析。得出的数据中 X 射线衍射谱显示,Eu³⁺,Li⁺共掺杂的 ZnO 薄膜具有 *c* 轴择优取向,X 射线衍射谱中除 ZnO 晶向以外没有出现其它结晶峰;Eu³⁺,Li⁺共掺杂的 ZnO 薄膜的光致发光谱与 ZnO 纯晶体薄膜的发射光谱基本相似,但是掺杂 ZnO 薄膜的紫外发光峰却出现红移现象,峰值位于 382nm 处,且发光峰也不 尖锐。当以 395nm 的激发光照射样品时,在光致发光光谱中观察到了稀土 Eu³⁺在 594nm,613nm 附近的特征发光峰。结 果表明,掺杂元素 Eu³⁺,Li⁺均已进入到 ZnO 晶格中,形成了以 Eu³⁺为发光中心的 ZnO 纤锌矿结构。

关键词: 薄膜;脉冲激光沉积;X 射线衍射;光致发光

中图分类号: 0484.4 文献标识码: A doi:10.3969/j.issn.1001-3806.2011.01.005

Study of the structure and photoluminescence property of Eu³⁺ and Li⁺ co-doped ZnO film

XIE Xiao-jun¹, LI Qing-shan^{1, 2}, DONG Yan-feng¹, ZHAO Tao¹

(1. Department of Physics, Qufu Normal University, Qufu 273165, China; 2. College of Physics, Ludong University, Yantai 264025, China)

Abstract: In order to study the property of Eu^{3+} and Li^+ co-doped ZnO thin film, it was deposited on the P-type Si (111) substrate by means of pulsed laser deposition (PLD) method with Eu^{3+} as luminous center and Li^+ as the low charged compensated ions and the sensitizer. The photoluminescent(PL) spectra and the X-ray diffraction(XRD) spectra of the film were measured to analyze the crystal structure and photoluminescent property. Through XRD, it can be seen that the ZnO: Eu^{3+} , Li^+ film was highly c-axis oriented. In the XRD spectrum, no other crystal orientations were observed except the ZnO crystal orientation. The doping of Eu^{3+} into ZnO lattice introduced tensile stress, making ZnO crystal lattice spacing larger; but as the oxygen pressure increased, the crystal lattice spacing and lattice constant both had a smaller trend. The PL spectra of the Eu^{3+} , Li^+ co-doped ZnO thin film was similar with that of pure ZnO films, but the UV emission peak showed a red-shift phenomenon at about 382nm, and the emission peak was not sharp. When irradiated under the wavelength of 395nm, obvious emission at the results indicate that the doping elements of Eu^{3+} and Li^+ have incorporated into the crystal lattice of ZnO, and conform the wurtzite structure with Eu^{3+} as its luminescent centre.

Key words: thin films; pulsed laser deposition; X-ray diffration; photoluminescence

引 言

ZnO 是直接宽带隙半导体材料,室温下禁带宽度为3.37eV,激子束缚能高达60meV,具有优异的物理 化学性质。作为一种发光材料,ZnO 无论在基础研究 还是在应用领域均受到极大的关注^[1-3]。纯晶体 ZnO 薄膜存在着两个明显的发光带,分别是强而窄的蓝紫 带(峰值波长在 390nm 附近)和弱而宽的绿带(峰值 波长在 510nm 附近)^[4-5]。虽然当前有关于纯晶体 ZnO 薄膜红光发射的研究报道,认为其红光发射的机 制属于氧填隙发光,但是发光强度很弱,一般难以满足 实际应用的需求,相比较于未掺杂 ZnO 纳米薄膜,掺 杂 ZnO (如稀土元素 Eu³⁺的掺杂)显示出更富有前景 的研究价值。稀土 Eu³⁺ 因其发光的高纯性和高效性, 经常被看作重要的发光中心,成为光电器件中一种重 要的发红光材料。近年来关于稀土 Eu³⁺ 掺杂 ZnO 基

基金项目:曲阜师范大学青年基金资助项目(XJ0703) 作者简介:解晓君(1986-),女,硕士研究生,主要从事纳 米薄膜材料与功能器件方面的研究。

^{*} 通讯联系人。E-mail: qslildu@126. com

收稿日期:2010-04-23;收到修改稿日期:2010-06-01

础理论与制备应用方面的研究,已经取得了一定的成 果^[6-7]。理论上分析,稀土 Eu³⁺的⁷F₀→⁵L₆吸收带与 未掺杂的 ZnO 蓝紫波段发射带重叠,如果稀土 Eu³⁺ 与纳米 ZnO 基质之间存在有效的能量传递, 就可以 利用 ZnO 基质强的紫外发射来增强稀土 Eu³⁺的特征 发射。目前稀土离子掺杂到基质材料中,常用的是水 热法^[8]、溶胶凝胶^[9]、高温固相反应^[10]或磁控溅射^[11] 等方法。同时,Eu³⁺本身也可与其它元素共同作发光 敏化剂促进发光^[12]。但是,由于3价稀土离子氧化物 的熔点远高于Ⅱ-Ⅵ族化合物的熔点,且3价稀土离子 的半径和电荷与Ⅱ族阳离子有较大差别,使得稀土离 子难以有效地掺杂到半导体基质中,通常稀土离子只 能存在于晶界^[13-14]。因此,如果用碱金属 Li⁺ 作为敏 化剂,增加稀土离子在 ZnO 基质中的固溶度^[15],促进 Eu³⁺更好地掺入 ZnO 晶格中,将更有利于能量在 ZnO 基质与稀土离子间的传输,并增强其发光性能^[16]。作 者采用脉冲激光沉积(pulsed laser deposition, PLD)设 备,通过激光烧蚀靶材,改变氧压生长条件,制作出较 均匀的 Eu³⁺,Li⁺共掺杂 ZnO 薄膜,并对其结构与发光 性能进行了研究。

1 实 验

Fig. 1 The structural diagram of PLD system

使用的靶材为上海大恒光学精密机械有限公司生产的 Eu³⁺,Li⁺共掺杂ZnO靶(Eu³⁺,Li⁺掺杂的原子数分数 分别为0.04和0.02),靶材纯度优于99.99%。衬底 为洛阳单晶硅有限责任公司生产的单晶Si片,导电类 型为P型,厚475µm,晶向为(111)取向。

Si 衬底在放入真空室之前的预处理程序如下: (1)用去离子水漂洗硅片;(2)分别用丙酮、乙醇超声 波清洗 15min;(3)用去离子水反复冲洗;(4)用质量 分数为0.05的HF酸腐蚀5min,以去除硅片表面的氧 化层;(5)在去离子水中浸泡10min。上述流程完成后 将硅片用高纯 N₂ 吹干,在5min内放入真空室。生长 薄膜时采用德国 Tuilaser 公司生产的Thin Film Star-20 型 KrF 准分子激光器熔融 Eu³⁺,Li⁺共掺杂 ZnO 靶,激 光波长 248nm,脉宽 20ns,激光能量密度约 2mJ/cm², 工作频率 5Hz。在样品制备过程中,样品台持续匀速 自转以保持沉积薄膜的均匀性。系统背底真空度为 10⁻⁵Pa,源基距为 5cm,高纯氧气(99.999%) 压强可 控,衬底温度可调。实验中,分别通过改变氧压和衬底 温度生长了系列样品。用 RF5301-PC 荧光分光光度 计测量了样品在室温下的光致发光(photoluminescence, PL),用 BD2000X 射线衍射仪研究了薄膜的晶 体结构。

2 结果与分析

2.1 样品的 X 射线衍射(X-raydiffration, XRD)谱

Fig. 2 XRD pattern of the ZnO: Eu³⁺, Li⁺/Si film, 1—Si substrate; 2---0Pa; 3-0.02Pa; 4-0.2Pa; 5-2.0Pa

0Pa,0.02Pa,0.2Pa 以及 2.0Pa 时所制备样品的 XRD 谱线。作为对比,同时测得了实验用 Si 基片的 XRD 谱线。图中纵坐标仅表示峰值的相对强度。

XRD 图谱显示,制备出的掺杂 ZnO 薄膜在 $2\theta = 34^{\circ}$ 附近存在着唯一的、尖锐的(002)衍射峰,以及 $2\theta =$ 28.5°附近有 Si 基片的衍射峰,但没有发现其它的衍 射峰。由此可以判断稀土元素的掺杂位置位于 ZnO 晶格中,取代 Zn 位或位于填隙位,没有单独形成结晶 的氧化物。由此可知,本实验中 Eu^{3+} , Li^+ 共掺杂的 ZnO 薄膜为单晶结构,生长过程沿着有最低能量的 (002)晶向择优生长,因此薄膜具有高度 c 轴趋向,结 晶质量很好。比较各谱线可看出,随着氧压的升高, (002)衍射峰的位置逐渐向大角度方向移动。根据 Bragg 公式 $2d\sin\theta = k\lambda$ 可知, 生长的薄膜的晶面间距 均大于 ZnO 体材料的标准值 0.2603nm, 且随着氧压 的增大,晶面间距逐渐减小。这是由于 Eu³⁺的半径为 0.95nm, 而 Zn²⁺ 的半径仅为 0.74nm, 可能是 ZnO 中掺 入的 Eu³⁺ 进入了 ZnO 晶格中,取代部分 Zn 位,较大的 离子半径在薄膜中引入了张应力,使得薄膜沿 c 轴方 向受到拉伸,晶面间距相应大于 ZnO 材料的标准值。 随着氧压的增大,弥补了薄膜生长过程中的氧流失,氧 空位相应减少,薄膜的生长趋向致密,晶面间距也便相 应减小。衍射峰强度在氧压为0.02Pa,0.2Pa 时达到 最强,且半峰全宽(full width at half maximum, FWHM) 达到最小,这一点与纯 ZnO 的生长性质相似^[17]。根据 Scherrer 方程^[18]: $D = \frac{0.9\lambda}{\beta \cos\theta}$,可以估算晶粒的平均尺

寸,其中,D为晶粒尺寸, λ 为 X 射线波长, θ 为衍射峰 所对应的衍射角, β 为半峰全宽。另外,根据下式:

$$d_{hkl} = \left[\frac{4}{3} \left(\frac{h^2 + hk + k^2}{a^2}\right)^2 + \left(\frac{l}{c}\right)^2\right]^{-1/2} \quad (1)$$

可计算六方晶系结构样品沿 c 轴方向的晶格常数,其 中 h,k,l 为晶面指数, a,c 为晶格常数,d 为晶面间距, 结果列入表 1 中。

Table 1 The microstructure parameter	• of the Eu ³⁺	, Li *	co-doped	ZnO	film
--------------------------------------	---------------------------	--------	----------	-----	------

growth of oxygen pressure/Pa	diffraction angle 2 <i>0</i> /°	FWHM /°	grain size D∕nm	interplanar spacing d∕nm	lattice con- stant c/nm
0	33.56	0.811	10.11	0.2668	0.5436
0. 02	34.04	0.421	19.51	0.2632	0.5264
0. 2	34.14	0.423	19.42	0.262	0.524
2.0	34.32	0.478	17.19	0.2605	0.521

表1显示,掺杂薄膜样品的晶格常数均大于 ZnO 体材料晶格常数的标准值 c = 0.520661 nm,这说明,所 掺杂稀土元素较大的离子半径在薄膜生长中引入了张 应力,使得薄膜沿 c 轴方向受到拉伸。但晶格常数总 体呈减小趋势,分析认为,随着氧压的增大,氧元素得 失趋于平衡,薄膜生长趋向致密,Eu³⁺不易取代 Zn²⁺ 位进入 ZnO 晶格,引入的张应力相应减小,所以,薄膜 形变减小,晶格常数、晶面间距呈减小趋势。这与 (002)衍射峰向大角度方向移动相对应。由表1还可 以发现,在 10^{-2} Pa, 10^{-1} Pa 氧压氛围下半峰全宽最小, 晶粒尺寸最大。分析认为,在此氧压下制备 Eu³⁺,Li⁺ 共掺杂的 ZnO 薄膜,氧元素的得失基本保持平衡,此 时的生长结晶质量较好。当氧压继续增大时,过量的 氧离子发生碰撞,氧离子在衬底表面的迁移能减小,反 而不利于结晶,使得 c 轴趋向变差,导致(002) 衍射峰 的强度降低,半峰全宽增大。

2.2 PL 分析

实验中采用岛津公司生产的紫外-可见荧光光度 计测量了样品的 PL 谱。图 3 为无氧以及氧压分别为

Fig. 3 Photoluminescence spectra of ZnO: Eu³⁺, Li⁺/Si grown on Si substrate ($\lambda_{em} = 325$ nm), 1—vacuum; 2—0. 02Pa; 3—0. 2Pa; 4—2. 0Pa

0.02Pa,0.2Pa,2.0Pa 时,样品的 PL 谱。所用激发波 长为 325nm,测量均在室温下进行。 由图 3 可以看出,样品的发光主要由紫外发光和 宽带深能级发光组成。作为对比,作者观察了同实验 室 LIANG^[17]等人同等条件下制备的纯 ZnO 的光致发 光谱。通过比较,发现两种薄膜的发射光谱基本相似。 但是掺杂 ZnO 薄膜的紫外发光峰却出现红移现象,峰 值位于 382nm 处,且发光峰不尖锐,与纯 ZnO 尖锐的 紫外发光峰也不完全相同。分析认为,掺杂的 Eu³⁺, Li⁺进入到 ZnO 晶格中,对 ZnO 薄膜的结构与带隙产 生影响。实验中没有发现 Eu³⁺的特征发射峰,认为可 能是由于基质向稀土离子无法传递能量,或者传递的 能量非常弱,不足以激发以稀土离子 Eu³⁺为中心的发 光。实验中又以 395nm 为激发波长照射所生长的 Eu³⁺,Li⁺共掺杂的 ZnO 薄膜而获得发射光谱。根据 稀土发光理论,395nm 的激发峰对应着稀土 Eu³⁺的 (⁷F₀→⁵L₆)特征吸收。发射光谱如图 4 所示。

Fig. 4 Photoluminescent spectra of ZnO: Eu^{3+} , Li^+/Si grown on Si substrate ($\lambda_{em} = 395$ nm), 1—vacuum; 2—0. 02Pa; 3—0. 2Pa; 4— 2. 0Pa

由图4可以看出,594nm和613nm处存在两个明 显的发射峰。根据稀土元素发光机理,这两处发射峰 分别对应稀土 Eu³⁺元素的 5D₀→⁷F₁, ⁵D₀→⁷F₂ 发射, 前者属于磁偶极跃迁,后者为电偶极跃迁。另外,图4 还显示出,电偶极跃迁强度略强于磁偶极跃迁。根据 固体发光^[19]理论, Eu³⁺元素在 ZnO 中主要占据非对 称中心的格位,即占据 Zn 粒子的格位或者位于填隙 位、晶界处。但用 325nm 的光激发时,却没有出现 Eu³⁺的发光峰,而且,与同条件下 ZnO 纯晶体薄膜的 发光峰相比,掺杂后生长出的薄膜在 382nm 处发光峰 较宽,强度也有所降低。为此认为在 ZnO 基质与稀土 离子间可能存在能量竞争,稀土离子与碱金属离子的 掺入,在一定程度上影响到了 ZnO 自身的结构,使其 带隙发生变化,具体原因还需进一步研究。另外从图 中还发现,随着氧压的变化,稀土离子的特征发光峰变 化并不明显,由此推断出,氧压可能不是对其发光产生 影响的主要因素。这一点可以从稀土离子的能级结构 中理解,+3 价态镧系离子的外层电子形成了满壳层 (5S²5P⁶),4f 轨道属于内层,f-f 跃迁几乎不受外部场 的影响,其发射波长是稀土离子自身的特有行为,与周 围环境无关。

3 结 论

利用 PLD 方法在 Si 衬底上生长了 Eu³⁺, Li⁺ 共掺 杂的 ZnO 薄膜。研究了 Eu³⁺, Li⁺ 掺杂对 ZnO 薄膜结 晶结构及发光特性的影响。结果表明,稀土离子能有 效地掺进 ZnO 晶格中,得到高度 c 轴择优取向的单晶 薄膜。Eu³⁺ 的掺入在 ZnO 晶格内引入张应力,使得 ZnO 晶面间距变大;但随着氧压的增大,晶格常数、晶 面间距都有变小趋势。本实验中得到的薄膜,在 ZnO 与 Eu 之间没有进行有效的能量传递,分析认为可能 是 ZnO 基质与稀土离子间存在着能量竞争。在 PL 光 谱中观察到了稀土 Eu³⁺在 594nm 和 613nm 附近的特 征发光峰。表明掺杂元素 Eu³⁺, Li⁺ 均已进入到 ZnO 晶格中,形成了以 Eu³⁺ 为发光中心的 ZnO 纤锌矿 结构。

参考文献

- ZHANG D H, WANG Q P, XUE Zh Y. Ultra violet photoluminescence of ZnO films on different substrates [J]. Acta Physica Sinica, 2003, 52(6): 1484-1487(in Chinese).
- [2] LIN B X, FU Zh X, JIA Y B, et al. The ultra violet and green photoluminescence centers in un-doped zinc oxide films [J]. Acta Physica Sinica, 2001, 50(11):2208-2211 (in Chinese).
- [3] LEONG E S P, YU S F, LAU S P. Directional edge emitting UV random laser diodes[J]. Applied Physics Letters, 2006, 89(22):2211-2219.
- [4] SONG G L, SUN K X. Study on the visible emission mechanism of nanocrystalline ZnO thin films[J]. Acta Photonica Sinica, 2006, 35 (3): 389-393 (in Chinese).
- [5] LU Sh Ch, SONG G L, XIAO Zh Y, *et al.* Preparation and nanocrystals ZnO powder and study on its luminescence[J]. Chinese Journal of Lumin, 2002, 23(3): 306-310(in Chinese).
- [6] CHE P, MENG J, GUO L. Oriented growth and luminescence of ZnO:Eu flms prepared by sol-gel process [J]. Journal of Luminescence, 2007, 122(26):168-171.
- [7] ISHIZUMI A, TAKAHASHI Y, YAMAMOTO A, et al. Fabrication

and optical properties of Eu^{3+} -doped ZnO nanospheres and nanorods [J]. Materials Science and Engineering, 2008, B146(1/3):212-215.

- [8] WANG M L, HUANG Ch G, HUANG Zh, et al. Synthesis and photoluminescence of Eu-doped ZnO microrods prepared by hydrothermal method[J]. Optical Materials, 2009, 31(10): 1502-1505.
- [9] SONG G L, SUN K X, YANG Y T. Preparation and photoluminescence investigation of europium-doped zinc oxide nanocrystalline[J]. Spectroscopy and Spectral Analysis, 2007, 27(4): 639-642 (in Chinese).
- [10] CHEN L, ZHANG J H, ZHANG X, et al. Synthesis and optical properties of Eu³⁺, Li⁺ codoped ZnO: Zn phosphors[J]. Journal of Optoelectronics · Laser, 2008, 19(5): 632-635(in Chinese).
- [11] YUDATE S, FUJII T, SHIRAKATA S. Structural properties of Eudoped GaN flms prepared by RF magnetron sputtering[J]. Thin Solid Films, 2008, 517(4): 1453-1456.
- XU S Y, GE W P, WAN G L, et al. Experimental research of the sensitization effect of Eu³⁺, Sm³⁺, Th³⁺ and TTFA polymers[J]. Laser Technology, 2008, 32(6):579-581 (in Chinese).
- [13] LIU Sh M, LIU F Q, ZHANG Zh H. Photoluminescence of ZnO: Tb nanoparticles[J]. Acta Physica Sinica, 2000, 49 (11): 2307-2309 (in Chinese).
- [14] LIU Sh M, XU Zh, LIU F Q, et al. Energy transfer between rare earth ions and nanocrystalline matrix in rare earth doped ZnS nanocrystals[J]. Journal of the Chinese Rare Earth Society, 2001, 19 (6): 566-569(in Chinese).
- [15] LU Zh Y, HE F F, XU P Ch, et al. Effects of heat-treatment temperature on Eu³⁺ and Li⁺ co-doped ZnO photoluminescence by solgel process[J]. Journal of Wuhan University of Technology Materials Science, 2008, 23(1):20-23(in Chinese).
- KANG M, XIE K N, LU Zh Y, et al. Preparation of nanometer material ZnO: Eu , Li with red fluorescence by the sol-gel method [J]. Journal of Sichuan University (Engineering Science Edition), 2005, 37(1):65-68(in Chinese).
- [17] LIANG D C, LI Q Sh, ZHANG L C, et al. The effect of growth parameters and post-processing on the optical properties of ZnO thin films[J]. Laser Journal, 2008, 29(5):74-76(in Chinese).
- [18] CULLITY B D. Elements of X-ray diffraction [M]. 2nd ed. Hardcover: Addision-Wesley Publishing Company, 1978;292-295.
- University of Science and Technology of China. Solid luminescence
 [M]. Beijing: Institute of Physics, Chinese Academy of Sciences, 1976:374-377 (in Chinese).