文章编号: 1001-3806(2007)06-0636-03

巨磁阻薄膜激光感生电压的温度稳定性研究

崔文东¹,张鹏翔[▶],刘 翔¹,张国勇¹,谈松林¹,戴永年²

(1. 昆明理工大学 光电子新材料研究所, 昆明 650051; 2 云南省有色金属真空冶金重点实验室, 昆明 650091)

摘要:为了研究温度对激光感生热电电压的影响,采用脉冲激光沉积方法制备了 $La_{l_x} CayM nO(LCMO), La_{l_x} Ph_x M nO(LPMO)$ 和 $La_{l_x} S_x CaO(LSCO) 3种薄膜。用锁相斩波系统测量了激光感生热电电压依环境温度的变化并定义 了温度系数,进行了理论分析和实验论证,取得了温度系数数据。结果表明,LSCO的温度系数最小并为正温度系数,LC-MO温度系数最大是负温度系数,LPMO温度系数为正。这一结果对激光感生电压器件的稳定性是有帮助的。$

关键词: 薄膜; 温度系数; 锁相斩波系 统; 激光感生热电电压信号

中图分类号: 0484 4 0732 文献标识码: A

Temperature stability of laser induced therm oelectric voltage signal in colossal magneto resistance thin films

CUI Wen-dong¹, ZHANG Peng-xiang¹, LIU Xiang¹, ZHANG Guo-yong View Song-lin¹, DAI Yong-nian² (1. Institute of A dvanced M aterials for Photoe lectronics, Kurming University of Science and Technology, Kunming 650051, China 2. Key Laboratory of V acuum M etallurgy of Nonferrous M etals of Yunnan Province, Kurming 650091, China)

Abstract $La_{1-x}Ca_{x}MnO(LCMO)$, $La_{1-x}Pb_{x}MnO(LPMO)$ and $La_{1-x}St_{x}CoO(LSCO)$ is in films were prepared with laser pulse deposition technique in order to investigate the laser induced them oelectric voltage signal which affected by temperature The laser induced them oelectric voltage signals of $La_{1-x}Ca_{x}MnO_{3}(LCMO)$, $La_{1-x}Pb_{x}MnO_{3}(LPMO)$ and $La_{1-x}St_{x}CoO_{3}(LSCO)$ thin films were measured at 290K ~ 340K temperature range by using bck-in amplifier. The signal temperature coefficients (STC) of three CMR h in films were defined and compared. It was found that the LSCO demonstrated positive and sm allest STC, while LCMO show ed largest and negative STC.

Key words thin films, signal temperature coefficient, bok in amplifier, laser induced them oelectric voltage signal

引 言

1990年, CHANG 等人首先在高温超导材料 YBa₂Cu₅O₇₋₆薄膜中观察到激光感生热电电压效应^[1]。 此后近 5年的大量研究表明,这是一种基于各向异性 赛贝克效应发生的现象^[23]。最近, TAN^[4]等发现在 倾斜 LaA IO₃ 单晶衬底上蒸镀的 La_{1-x} Pb_xM nO₃ (LP-MO)薄膜, 在紫外脉冲激光照射下会产生激光感生热 电电压效应。该效应可用于激光(远红外至紫外)能 量测定、激光剖面成像、热辐射探测毫米波探测等领 域^[56]。与传统的探测器相比激光感生热电电压(lar ser induced them oelectric voltage, LIFV)器件具有工作 波长宽(从毫米波到远红外到紫外)、响应时间短(从 纳秒到皮秒)、无需加偏置电压或电流和工作于室温 等特点,因此受到广泛关注。但应用中环境温度将如

作者简介: 崔文东(1978-), 男, 硕士研究生, 主要研究方向为强关联材料的制备和应用。

* 通讯联系人。 E-m ail pxzhang@ iampe com 收稿日期: 2006-09 14; 收到修改稿日期: 2006-11-10 何影响这类器件尚无系统研究。作者针对这一问题, 对 $La_{1-x} Ca_M nO_3 (LCMO), La_{1-x} Pb_x M nO_3 (LPMO),$ $La_{1-x} S_x CaO_3 (LSCO) 3种薄膜进行了感生热电电压峰$ 值依环境温度变化的测量。结果表明 LCMO 的温度系数为负最大,而 LSCO 温度系数最小, LPMO 温度系数为正居中。

1 样品制备

薄膜用脉冲激光溅射法 (pulsed laser deposition PLD)^[7],在倾角为 15°的 LaA D₃ (LAO)倾斜衬底上制 备。先用陶瓷工艺烧结出多晶靶材,经 X 光检验确认 是所需成分且杂相少于 1% 时,便可用于制作薄膜。 脉冲激光用 LPX 300I型准分子激光器,其工作气体为 K ff。输出的激光波长为 248nm,脉冲宽度是 25ns 能 量为 250m J 以 5H z的重复频率工作。紫外激光脉冲 入射到置于真空室中的靶材上,一般真空室的真空度 为 10^{-5} Pa 氧分压为 40Pa。为了提高外延薄膜的质 量,衬底必须加热到适当的有利于薄膜外延生长的温 度。生长完成之后的薄膜在 780℃, 1 013×10⁵Pa下,

2 LITV信号温度系数测量系统

一般超巨磁电阻(cobssal magneto resistance, CMR)薄膜感生热电电压的测量多用脉冲准分子激 光,以快响应记忆示波器做记录设备^[8]。但通常准分 子激光每个脉冲之间的能量相差很大,而环境温度引 起的感生电压变化相对较小,这给准确测量带来困难。 因此作者使用如图 2所示的框图进行测量。图 2中的

Fig 2 Diagram of measurement system for the LITV signal of thin fihm at different temperature

激光器用 DB-120-3型 (半导体)激光器作为辐射源。 连续激光输出波长为 808nm, 输出功率 80mW, 样品处 功率约为 30mW。斩波器 (频率为 1000H z) 将连续光 调制,并输出同步信号给锁相放大器,这样可以得到高 信噪比由探头测到的信号。将一个凸透镜置于探头的 前面以便在膜上得到小的光斑,探头的核心元件就是 在 La D3倾斜单晶衬底上分别生长的 LCMO, LPMO, LSCO薄膜的光敏元件,将光敏元件置于一个圆柱型 空腔内,空腔内壁已经过氧化处理,附上了一层光吸收 材料,可以防止光经过内壁多次反射后再次照到薄膜, 而影响真实的测量结果。控温系统由热电偶、继电器、 数显控温仪等组成,升温控制为 30s升温 1℃,在 290K ~ 340K 内模拟环境温度的变化。在薄膜上获得 LITV 信号后,为避免周围环境的电磁干扰及热噪声干扰,使 用一根同轴电缆线来将 LITV 信号传输到锁相放大 器。锁相放大器时间常数为 300m s 作者读取锁相放 大器上的电压值为相应温度下的信号幅度。

3 测量结果及分析

在 290K~ 340K温区内分别对生长在倾角为 15° 的 LaA D₃ 衬底上, 制备条件相同的 La₁₉Ca₁ M nO₃, La_{1 67} Pb_{0 33}M nO₃ 和 La_{0 5} Su₀ 5 CoO 薄膜样品的 LIFV 信 号进行测量。结果如图 3 所示。图 3表明, La, ₀ Ca, 1 M nO₃薄膜的 LIIV 信号随温度升高而降低并且变化

Fig 3 Temperature dependence of LTTV signal for different films by bock-in amplifier

较大, La₀ ₅ Sr₀ ₅ CoO薄膜的 LIIV 信号随着温度几乎没 变化, 而 La₀ ₅ Pb₀ ₃₃M nO₃ 薄膜的 LIIV 信号随着温度 升高而升高经过位于 310K 极值点后又略有下降。为 了讨论方便和实用要求, 作者定义了温度系数 *K_T*:

K、 (dU/dT)/U、 (1)
式中, dU/dT是感生电压随温度变化, U、为温度为 T
度时的感生电压。按测量温度范围内(290K~330K)
的平均温度系数近似对以上 3种材料进行比较,结果
列入表 1。图 3和表 1显示温度升高 LPMO和 LSCO
薄膜的 L IIV 电压信号也随之升高,温度系数为正。
而 LCMO 薄膜相反温度系数为负。在测量的温度范
围内, LSCO薄膜的温度系数最小, 用此种膜做探测器
在环境温度改变时工作最稳定。

Tab 1 Sign at temperature coefficients of three CMR thin films

	$\mathrm{La_0}~_9\mathrm{C}\mathrm{a_0}~_1\!\mathrm{M}~\mathrm{nO}_3$	La _{0.5} St _{0.5} CoO	${\rm La_{0}}_{67}{\rm Pb}_{0,33}\!{\rm M}{\rm nO}_{3}$
signal-temperature	- 0 98%	0. 06%	0 31%
coefficient			

为了研究造成温度系数不同的原因,分析产生 LIIV 信号的各种因素。文献[9]中导出了激光感生热 电电压公式:

$$U(t) = \frac{\alpha_0 E ls \mathbf{n}(2\alpha)}{4d \rho_{c_0} \sqrt{\pi D t}} (S_{ab} - S_c) \left(\frac{\delta^2}{e^{\theta t}} - \frac{d^2}{e^{\theta t}} \right) \quad (2)$$

式中, α_0 为光吸收系数, *E* 为脉冲激光能量, *l* 为激光 照射到薄膜长度, α 为衬底的倾斜角度, $(S_{ab} - S_c)$ 为赛 贝克系数之差, 下标 *a*, *b*, *c*分别表示 *a* 面、*b* 面、*c* 面、*d* 是薄膜的厚度, ρ 为薄膜材料的密度, α_0 为材料的比热 容, *D* 为热扩散系数, *t* 为时间因子, δ 为光穿透薄膜的 深度。依照 (2)式讨论影响感生热电电压温度系数的 各种参数, 在 290K ~ 340K 温度范围内, c_0 , *D*, δ 和 α_0 变化应该很小。温度的变化对电子运输行为的影响会 较强, 即电阻及电阻的各向异性变化。电阻的各向异 性变化又导致了赛贝克系数的各向异性变化。理想配 比的 Lao $_{5}$ Su $_{5}$ CoO₃ 和 La_b $_{67}$ Pho $_{33}$ M nO $_{3}$ 薄膜室温时处 于金属状态,导电方式主要是电子导电所以温度系数 为正值。 La_0 , Ca_1 ,M nO_3 室温时处于 P型半导体,导 电方式主要是空穴导电所以温度系数为负值,这种情 况可以在材料的电阻 – 温度曲线中表现出来。图 4是

Fig. 4 Resistance temperature curves of the films

用四探针法测出的 3种薄膜电阻温度曲线,可以明显 地看出电阻和 L ITV 信号随温度变化趋势大体相同。

从实用的角度看,温度系数的选取对于设计获得 高稳定性测量仪具有重要的指导意义。而材料的选 取、组合、合成可能为此提供进一步的解决方案。由于 这些材料都是钙钛矿结构的过渡族金属氧化物,将正 负温度系数的材料进行组合合成是不难实现的,因此 实现零温度系数材料也是有可能的。

4 结 论

利用 PLD 法,制备了一系列生长在倾斜单晶衬底 上镜面光滑平整的钙钛矿结构的薄膜,并在 290K~ 340K 温度范围内对这些薄膜的 LIFV 信号进行了测 量。用斩波锁相系统提高了测量精度,获得不薄膜的 LIFV 信号和温度系数的关系。结果表明,在测量的温

(上接第 635页)

的高低,光程可以是 lmm~100mm;(3)近红外光可以 在玻璃或石英介质中穿透。这种特性不仅可以直接使 用玻璃或石英制成样品池,价格较低,而且使一般玻璃 或石英光纤可以用于近红外光谱技术,在过程分析及 有毒材料或恶劣环境中的样品的远程分析得以实现; (4)可得到精度很高的定量测量结果。本文中的试验 系统测量分辨率可达 0 005%,测量误差小于 ±0 01%;(5)不破坏样品,不用试剂,故不污染环境; (6)测定速度极快;(7)与光纤传感技术相结合,信号 的传输距离长,可实现生产过程在线检测;(8)可大大 减少分析仪器的光学零件、减少光学系统的调整难度, 便于仪器的小型化;(9)可在危险和恶劣的环境下使 用,如有毒、充满易燃、易爆样品的环境;(10)光纤对 电磁干扰不敏感,可在工况复杂的工业现场稳定工作。 度范围内, La₄, ₅ Su₆, ₅ CoO薄膜的 LIIV 信号温度系数明 显小于 La₄, ₅ Ca₀, ₁M nO₃ 和 La₄, ₆₇ Pb₀, ₃₃M nO₃ 薄膜, La₀, Ca₀, ₁M nO₃ 薄膜的温度系数为负值最大, La₀, ₆₇ Pb₀, ₃₃ M nO₃ 薄膜为正值。分析表明影响温度系数的主要因 素可能是赛贝克系数的温度关系。通过选取或组合合 成新材料, 实现近于零温度系数是可能的。

参考文献

- CHANG C L, KLE NHAMMES A, MOULTON W G et al Symmetryforbidden thermoelectric voltages in YBa₂Cu₃O_{7-X} [J]. Phys Rev 1990 B41 (16): 11564~ 11567.
- [2] TATE K I, JOHNSON R D, CHANG C L et al. Transient baser-irr duced voltages in room-temperature films of YB a₂ Cu₃O_{7-X} [J]. Appl Phys, 1990, 67(9): 4375
- [4] TAN S L, ZHANG H, CU W. D et al Laser induced them oelectric voltage effect in La_{0.67}Pb_{0.33}MnO₃ th in film sdoped with Ag [J]. A cta Physica Sinica, 2006 55(8): 4226~4231(in Chinese).
- [5] ZHANG P X, L10 Zh ZHANG Y et al. Room temperature light ther more detector made of hight Tc superconductor [J]. Acta Physica Sint ca, 1998 7 (11): 810~816(in Chinese).
- [6] ZHANG' P X WEN X M, GU M M et al. Thin film nom-temperature laser power meter [J]. Chinese Jou mal of Laser 2002, 29(3): 205~ 208(in Chinese).
- DJKAMP D, VENKATESAN T, WU X D. Preparation of Y-Ba-Cu oxide superconductor thin using pulsed laser evaporation from high T c bulk material [J]. A PL, 1987, 51(8): 619~621.

8] WANG Ch ZhANG P X, ZHANG G Y. Optimum thickness for laser induced thermoelectric voltage effect in hing T c superconductor and CMR thin film [J]. A cta Physica Sinica, 2004 6(6): 1727 ~ 1730(in Chinese).

- [9] ZHANG P X, LEE W K, ZHANG G Y. Tine dependence of laser-irr duced thermoelectric voltages in La_{1-X} Ca_X MnO₃ and YBa₂ Cu₃O_{1-X} hin films [J]. A P I, 2002, 81(21): 4026
- [1] ZHU Y Y, WANG M L Research of on-line monitoring instruments of akohol degree and sugar degree in the grape wine [J]. Chinese Journal of Scientific Instrument 2005, 26 (8): 238 ~ 240 (in Chinese).
- [2] LAN X F, LIU Y, GAO Sh M et al Analysis of fluorescence spectra of alcohol and its characteristic [J]. Laser T echnology, 2003, 27(5): 477~483 (in Chinese).
- [3] YANG X F, WANG X M, GAO Z H et al. Research on liquid concertration real time detecting system based on Fabry-Pérot in terferom eter [J]. A cta Optica Sinica 2005, 25(10): 1343~1346(in Chinese).
- [4] JIANG D Sh, WEIR X. Solution concentration measurement system based on fiber F-P interference wavelength [J]. Chinese Journal of Lasers 2004, 31(9): 1127~1131.
- [5] SCHULLER R B, ENGEBRETSEN B, HALLERAKER M. M easurement of water concentration in oil/water dispersion by a single electrode capacitance probe [A]. MTC 2003-Instrum entation and M easurement Technology Conference [C]. Vail USA: Institute of Electrical and Electronics Engineers 2003 635~ 639.
- [6] LUGGAR R D, KEY M J MORTON E Jet al Energy dispersive X-ray scatter for measurement of oil/water ratios [J]. Nuclear Instruments and M ethods in Physics Research 1999, A422(1-3): 938~941.
- [7] JN W, STEWART G, CULSHAW B et al Absorption measurement of methane gas using a broad light source and interferometric signal processing [J]. Optics Letters 1993, 18 (16): 1364 ~ 1366