文章编号: 1001-3806(2007)02-0203-03

空心高斯光束通过光阑透镜系统的传输特性

王备战¹,赵志国^{1,2},段开椋²

(1. 洛阳师范学院 物理系, 洛阳 471022; 2 四川大学 激光物理与化学研究所, 成都 610064)

摘要:为了研究空心光束通过硬边光阑透镜傍轴 ABCD 光学系统后的传输特性,利用柯林斯衍射积分公式,推导出 了空心高斯光束通过受圆孔硬边光阑限制的傍轴 ABCD 光学系统的传输公式,所得公式可用来描述空心高斯光束通过 任意傍轴 ABCD 光学系统的传输。研究了光阑、透镜以及光阑透镜系统对空心高斯光束传输特性的影响,并用数值例做 了详细说明。结果表明,光阑和透镜均会使光束的光场分布向源平面前移,光阑会破坏空心高斯光束的空心性,而单纯 的透镜只改变光场分布,不会破坏光束的空心性。这一结果对于空心光束的产生和应用有理论指导意义。

关键词: 激光光学;空心性;柯林斯衍射积分;透镜;ABCD光学系统

中图分类号: O436 1 文献标识码: A

Propagation properties of hollow Gaussian beams through an optical system with a hard-edged aperture

WANG Bei-zhan¹, ZHAO Zhi-guo^{1, 2}, DUAN Kai-liang²

(1. Department of Physics, Luoyang Normal College, Luoyang 471022, China; 2 Institute of Laser Physics and Chemistry, Sichuan University, Chengdu 610064, China)

Abstract: In order to study propagation properties of hollow beams through a paraxial optical *ABCD* system with a hardedged circle aperture and a lens, the expressions for the propagation of hollow Gaussian beams through such a system are derived based on the Collins diffraction integral. The effects of an aperture, a lens and an aperture-lens system on the propagation properties of hollow Gaussian beams are studied and illustrated with numerical examples, which shows that both aperture and lens can shift the field of hollow Gaussian beams towards the source plane. It is also found that hollowness of the beam will be destroyed by the aperture, but not by the lens. The results of this study play a guiding role in the generation and application of hollow beams

Key words: laser optics; property of hollow beams; Collins diffraction integral; lens; ABCD optical system

引 言

近几年,随着激光技术的发展与应用,新型激光模式的研究逐渐成为人们关注的热点。其中,空心光束 (亦被称为黑洞光束)由于在原子光学中越来越广泛 地应用而备受人们的关注^[1~6]。在空心光束中可以用 偶极势诱导、俘获原子^[7.8],在锥状空心光束陷阱中可 获得接近 2µK温度的超冷原子^[7]。人们已提出各种 特殊激光模式的空心光束^[9.10]。作者以 CAI等^[10]提 出的一种新型的空心高斯光束为研究对象,研究其通 过受圆孔硬边光阑限制的傍轴 ABCD 光学系统后的传 输特性。说明光阑、透镜等光学元件对空心光束"空 心性"的影响。

E-mail: bz_wang@ sina com

收稿日期: 2005-12-30;收到修改稿日期: 2006-03-08

1 空心高斯光束通过受圆孔硬边光阑限制的 傍轴 ABCD 光学系统的传输

假设在初始平面 (z=0)上空心高斯光束的场分布 为^[9]:

$$E_n(r_0, 0) = \left(\frac{\frac{2}{r_0}}{w_g^2}\right)^n \exp\left(-\frac{\frac{2}{r_0}}{w_g^2}\right), (n = 0, 1, 2, \cdots) (1)$$

式中,n为空心高斯光束的阶数,wo 为基模高斯光束 (n=0)的束腰宽度。考虑空心高斯光束通过受圆孔 硬边光阑限制的傍轴 ABCD光学系统的传输,传输方 向为 z轴的正方向。假设光阑位于 z=0平面上,半径 为 a,如图 1所示。由柯林斯衍射积分公式^[10],光阑后 衍射光场在某一 z平面上的场分布可表示为:

$$E_{n}(r, z) = \frac{i}{\lambda B} \exp(-ikz) \int_{0}^{a} \int_{0}^{z} \int_{0}^{z} E_{n}(r_{0}, 0) \times \exp\left(-\frac{ik}{2B} [A_{r_{0}}^{2} - 2r_{0}\cos(\theta - \theta_{0}) + D_{r}^{2}]\right) \times r_{0} dr_{0} d\theta_{0}, (B \neq 0)$$
(2)

作者简介:王备战 (1971-),男,讲师,主要从事光学方面的研究。

(5)

Fig 1 Lens-apertured system

式中, κ , θ_0 和, θ 分别为入射面和观察面上的径向角和方向角坐标, λ 是波长, $k = 2\pi / \lambda$ 是真空中光波波数,A,B,C,D为傍轴光学系统传输变换矩阵的矩阵元。利用积分公式:

 $\frac{1}{2\pi} \int_{0}^{2\pi} \exp \left[ix\cos\left(\theta - \theta_{0}\right) \right] d\theta_{0} = J_{0}(x)$ (3)

由 (2)式可得:

$$E_n(r, z) = \frac{ik}{B} \exp(-ikz) \exp(-\frac{ikD}{2B}r^2) \times \frac{ik}{2} \int_0^a \frac{kr_0}{r_0} \int_0^a \frac{kr$$

$$\int_{0}^{\infty} f_{n}(x_{0}, 0) \exp \left[-\frac{1kA}{2B} \int_{0}^{2} J_{0} -\frac{kr_{0}}{B} r_{0} dr_{0} -\frac{1}{2B} \int_{0}^{\infty} (x_{0}) \right] = \sum_{m=0}^{\infty} (-1)^{m} \frac{x^{2m}}{2^{2m}} (m!)^{2}$$

式中,

为零阶贝塞尔函数。利用积分公式:

$$\int_{a}^{a} \int_{a}^{(m+n)+1} \exp(-bx^{2}) dx = \frac{1}{2} b^{-(m+n+1)} \times$$

 $[\Gamma(m + n + 1) - \Gamma(m + n + 1, a^2 b)]$ (6) 将 (5)式代入 (4)式积分得:

$$E_{n}(r, z) = \frac{ik}{B} \exp(-ikz) \exp\left(\frac{ik}{2B}Dr\right) \times \sum_{m=0}^{\infty} (-1)^{m} \frac{(kr)^{2m}}{2^{2m}(m!)^{2}B^{2m}w_{0}^{2n}} \int_{0}^{a} \int_{0}^{(m+n)+1} \times \exp[-dr_{0}^{2}] dr_{0} = ikw_{0}^{2(n-1)} \frac{\exp(-ikz)}{2B + iAkw_{0}^{2}} \times \exp\left(-\frac{ikD}{2B}\right) \sum_{m=0}^{\infty} \frac{(-1)^{m}(kr)^{2m}}{2^{2m}(m!)^{2}B^{2m}d^{m+n}} \times$$

 $[\Gamma(m + n + 1) - \Gamma(m + n + 1, a^2 d)]$ (7) 式中, $\Gamma(\cdot)$ 为伽马函数, $d = ikA/(2B) + 1/w_0^2$ 。(7) 式即为空心高斯光束通过受圆孔硬边光阑限制的傍轴 *ABCD*光学系统的传输公式,可用来描述空心高斯光 束通过受圆孔硬边光阑限制的傍轴 *ABCD*光学系统的 传输。对于轴上光场,令 r = 0,由(7)式可以看出,轴 上电场分布为: $E_n(0, z) = ikw_0^{-2(n-1)} d^{-n} \times$

 $\frac{\exp(-ikz)}{2B + iAkw_0^2} [\Gamma(n+1) - \Gamma(n+1, a^2d)]$ (8)

另外,当光阑孔径趋于无限大时,即 a→∞,利用公式:

$$\int_{0}^{\infty} \int_{0}^{n+m/2} e^{-\alpha x} J_{m} (2\beta x^{1/2}) dx =$$

 $n! \alpha^{-n-m-1} \beta^{m} e^{-\beta^{2}/\alpha} L_{n}^{m} (\beta^{2}/\alpha)$ (9) $\Rightarrow \pm i \pm i \pm i = 1.$

$$E_{n}(r, z) = \frac{ikAn!}{2Bw_{0}^{2n}d^{n+1}} \frac{\exp(-ikz)}{2B + iAkw_{0}^{2}} \exp\left(-\frac{ikDr^{2}}{2B}\right) \times \exp\left(-\frac{(kr/2B)^{2}}{d}\right) L_{n}\left[\frac{(kr/2B)^{2}}{d}\right]$$
(10)

(10)式即为文献 [9]中的结果,它是空心高斯光束在 无光阑限制时,通过傍轴 ABCD光学系统的一般传输 公式,可以认为是本文中的特殊情况。

2 数值分析

由于空心高斯光束实质上可看作是多个拉盖尔高 斯模的线性叠加^[9],在传输过程中由于不同模的演化 方式不同,造成了空心高斯光束有趣的传输特性^[9]。 在自由空间中,近场空心高斯光束仍可保持初始光束 的分布特性,即,轴上光场为 0,且光场关于传输轴 z呈 圆对称环状分布;传输过程中,空心高斯光束表现出 "聚焦"性,远场空心高斯光束能量集中在轴上,光束 演化为实心光束,横向光强最大值位于 z轴上。下面 将利用本文中所得公式重点研究光阑、透镜、以及光 阑 透镜系统对空心高斯光束光场的影响。透镜紧靠 光阑平面,如图 1所示。观察平面在光阑透镜后的某 一 z平面上。因此系统的 ABCD 变换矩阵为:

一化光强分布,计算参数为 $\lambda = 1.06 \mu m, w_0 = 100 \mu m$,

Fig 2 Normalized intensity distribution of hollow Gaussian beams of 2, 4, and 6 orders at planes z=0 and $z=2z_0$

 $f=2z_0$, $a/w_0=2$ 。由图 2a可以看出,源平面上光场关于中心原点呈圆对称环状分布,环的内外半径大小与光束腰斑 w_0 和光束的阶数 n有关,光强最大值位于 $f_{max}=w_0 n^{1/2}$ 处。但在图 2b中可以看到,光束的空心性 消失,光束能量集中在 z轴上,这是光阑透镜系统和光 束本身传输共同作用的结果。另外,在图 2b中用圈线 给出了使用 (4)式的直接积分结果,可以看出,(4)式和 (7)式的结果完全重合,但所用机时比约为7 1。

图 3为无透镜时 $(f \rightarrow \infty)$,光阑相对半径分别为 $a/w_0 = 1.5,2\pi$ 4时,4阶空心高斯光束轴上归一化场

Fig 3 Normalized axial intensity distributions of hollow Gaussian beam of 4 order versus the normalized distance z/z_0

强 $I_n(z) = E_n(0, z)$ ²随归一化传输距离 z/z_0 的变化 情况,其它计算参数与图 2相同。从图 3可以看出,光 阑相对半径对空心高斯光束的光场分布有重要影响。 光阑的存在导致光场分布前移,图 3中对应于不同的 光阑半径 $a/w_0 = 1.5,2\pi$ 4,轴上光强最大值分别位 于 $z/z_0 = 0.36,0.76\pi$ 2。另外,当光阑相对半径 a/w_0 为 4, $z/z_0 < 0.4$ 时,轴上光场为 0,说明此时光束的空 心性没有得到破坏,但当光阑相对半径 a/w_0 为 1.5和 2时,即使是近场部分,轴上光强不再为 0,这表明光阑 的存在破坏了光束的空心特性。

图 4为无透镜时 (f→∞),空心高斯光束轴上场强 最大值的归一化位置 _{4max}/₄₀ 随圆孔硬边光阑相对半 径 a/w₀的变化情况,计算参数与图 2相同。从图 4可

以看出,对于某一特定阶数的空心高斯光束,轴上光场 最大值位置 _{4max}/₄₀ 随光阑相对半径 *a*/w₀ 增大而增 大,对于 2阶,4阶和 6阶空心高斯光束,在 *a*/w₀分别 为 2 80,3 40和 3 90时, _{4nax} /₄₀最大值分别为 1.49, 2 05和 2 48,然后 _{4nax} /₅₀在 a/w₀分别大于 3 30, 3 90,4 35时,趋于稳定值 1.41,2 00和 2 45。说明 对于 2阶,4阶和 6阶空心高斯光束,只有当 a/w₀分 别大于 3 30,3 90,4 35时,光阑效用才可以忽略。

图 5为透镜焦距 f分别为 z₀, 2z₀和 4z₀时, 4阶空 心高斯光束轴上光场强度随归一化传输距离的变化,

Fig 5 Normalized axial intensity distribution of hollow Gaussian beams versus the normalized distance z/z_0 for the focal length $f = z_0$, $2z_0$ and $4z_0$, respectively, when $a/w_0 = 4$, the circled curve is for $f = 2z_0$ and $a/w_0 = 2$

其中实线,点线和虚线对应的光阑相对为半径 $a/w_0 =$ 4(由图 4,此时光阑效用可以忽略),其它计算参数与 图 2相同。从图 5可以看出,轴上光场最大值位置 y_{max}/a_0 随透镜的焦距减小而减小,透镜的存在导致光 场分布向源平面前移。另外从图 5可以看出,在 $z/a_0 < 0$ 4时,轴上光强近似为 0,比较图 3中 $a/w_0 = 4$ 曲线,说明透镜的存在只改变了空心高斯光束的场分 布,不会破坏光束的空心性。图 5中圈线表示 $f = 2a_0$, 光阑半径 $a/w_0 = 2$ 时的 4阶空心高斯光束轴上光场强 度的变化情况,可以看出,此时光阑透镜系统使光场更 一步前移,光束的空心性被破坏。

3 结 论

利用 Collins衍射积分公式,推导出了空心高斯光 束通过受圆孔硬边光阑限制的傍轴 ABCD 光学系统后 的传输公式,所得公式可用来描述空心高斯光束通过 任意傍轴 ABCD 光学系统的传输。研究表明,光阑和 透镜系统均会使光束的光场分布向源平面前移,光阑 或光阑透镜系统会破坏空心高斯光束的空心性,而单 纯的透镜系统只改变光场分布,不会破坏光束的空心 性。光阑效用的存在取决于光阑的相对半径和光束的 阶数。作者的研究对于指导空心光束的产生和应用有 理论指导意义。

参考文献

 ZHANG L, CA I Y J, LÜX H. Theoretical and experimental study of new dark hollow beams [J]. Acta Physica Sinica, 2004, 53 (6): 1777 ~1781 (in Chinese). 凸透镜 (平面在后)时, $\frac{1}{R_2} = 0$,所以, $R_1 = 60.787$;将 f_2 代入 (3)式得: $a_1 = -0.000169$ 。同理, 对后组焦距 $f = f_2' = -48$ mm, 求得: $R_3 = -24.315$, $R_4 = +\infty$, $a_{1b} = 0.000422$,其中 a_{1b} 表示后组衍射面的二次项系数。

至此,折衍混合长焦物镜前后组的初始结构确定, 下一步便可利用光学设计软件按照前面所说的顺序对 系统进行优化设计,得出设计结果。

2 设计结果

折衍混合长焦物镜系统的结构参数见表 1,衍射 面系数见表 2,结构简图见图 1b,系统总长 165mm,焦 Table 1 The structure parameters of the system

surface	surface type	radius /mm	thickness /mm	glass	sem i-aperture /mm
0	sphere	infin ity	infinity	air	
1	asphere	60. 787	8. 214	FK1_China	25. 000
2	diffractive	infin ity	89. 951		24. 722
3	asphere	- 24. 315	2 500	FK1_China	6. 9732
4	diffractive	infin ity	50. 139		6. 8354
5	sphere	infin ity	0.000	air	4. 4258

Table 2	The	coefficient of	diffractive	face
10010 2	1110	coefficient of	unnueure	nuce

surface	a_1	a_2	<i>a</i> ₃	a_4
2	- 0. 000169	2. 9568E - 8	- 8. 7843E - 11	5. 0111E - 14
4	0. 000422	1. 8142E - 6	- 4. 6575E - 8	1. 2366E - 9

距 250mm,满足设计要求。在实验中,对其与传统长 焦物镜的光学性能进行了比较,结果发现,在整个视场 垂轴像差、像散与传统设计相当,垂轴色差提升了大约 一个数量级,畸变变为 0.大大优于传统设计。

3 结 论

总的说来,利用折衍混合设计长焦物镜与传统设

(上接第 205页)

- Q U J P,L U N Ch, X A Y et al Generation of holbw laser beams and their applications in modem optics [J]. Progress in Physics, 2004, 24 (3): 336~379.
- [3] OVCH NN IKOV Y B, MANEK I, GR MM R. Surface trap for Cs atoms based on evanescent-wavecooling [J]. Phys Rev Lett, 1997, 79 (12): 2225~2228.
- [4] SONG Y,M LAM D, H LL W T. Clarifying the concepts of wave propagation through intermittent media [J]. OptLett, 1999, 24 (24): 1805 ~1087.
- [5] SOD NG J, GR MM R, OVCH NN IKOV Y B. Gravitational laser trap for atom s with evanescent-wave cooling [J]. Opt Commun, 1995, 119: 652 ~662.
- [6] YN J, ZHU Y, JHEW, WANG Y. A tom guiding and cooling in a dark

计相比,在重量、材料、结构的复杂程度等方面均具有 不少的优势,唯一的缺点在于衍射面的加工比较难,作 者曾采用灰度掩模法对衍射光学元件的制作进行过初 步探讨^[13,14],相信随着精密加工及微细加工技术的发 展,其前途会越来越好。

参考文献

- ZHANG Y M. Applied optics [M]. Beijing: China Machine Press, 1982 58~66 (in Chinese).
- [2] JNGF, YANYB, WUMX Binary optics [M]. Beijing: National Defence Industry Press, 1998. 7~13 (in Chinese).
- [3] MCHUGH T J. An overview of binary optics at Perkin-elmer corporation [J]. SP E, 1988, 884: 100.
- [4] COX J A. Overview of diffraction optics at Honeywell [J]. SPIE, 1988, 884: 127 ~132
- [5] FOO L D. Design examples of hybrid refractive-diffractive lenses [J]. SP E, 1989, 1168: 117~125.
- [6] ZHAO L P,WUM X, JN G F. Spherochromatism correction of a hybrid refractive-diffractive singlet [J]. Acta Optica Sinica, 1998, 18 (5): 621~626 (in Chinese).
- [7] ZHANG H J, WANG Zh Q, FU R L et al Design of hybrid refractivediffractive ultra-wide-angle eyepieces [J]. Acta Optica Sinica, 2003, 23 (1): 85 ~88 (in Chinese).
- [8] ZHAO Q L, WANG Zh Q, MU G G et al Hybrid refractive/diffractive eyep iece design for head mounted display [J]. Acta Photonica Sinica, 2003, 32 (12): 1495 ~1498 (in Chinese).
- [9] YUAN X C. Modem optical design method [M]. Beijing: Beijing University of Technology Press, 1995. 129~138 (in Chinese).
- [10] GOODMAN J W. Introduction to Fourier optics [M] Beijing: Science Press, 1979. 88 ~94 (in Chinese).
- [11] HERZIG H P. Micro-optics elements, systems and applications [M]. Beijing: National Defence Industry Press, 2002. 299 ~ 310 (in Chinese).
- [12] ZHANG YM. Applied optics [M]. Beijing: ChinaMachine Press, 1982. 253 (in Chinese).
- [13] YANG Zh, DA I Y F, YAN Sh H. Manufacturing system for gray-scale masks'mask patterns'making and technique study [J]. Laser Technology, 2004, 28 (4): 406 ~409 (in Chinese).
- [14] YANG Zh The study of binary op tics elements' design and manufacture technics [D]. Changsha: National University of Defence Technology, 2003. 20~44 (in Chinese).

hollow laser beam [J]. Physics Review, 1998, A58 (1): 509 ~513.

- [7] YN J, GAO W, WANG H et al Generations of dark hollow beams and their applications in laser cooling of atoms and all optical-type Bose-Einstein condensation [J]. Chinese Physics, 2002, 11 (12): 1157 ~ 1160.
- [8] BALYKN V I, LETOKHOV V S The possibility of deep laser focusing of an atomic beam into the A-region [J]. Opt Commun, 1987, 64: 151~156
- [9] CA I, Y, LÜ X, LU Q. Hollow Gaussian beams and their propagation properties [J]. Opt Lett, 2003, 28 (13): 1084 ~1086.
- [10] WANG X Q, LÜ B D. Focusing properties of Laguerre-Gaussian beams [J]. Laser Technology, 1996, 20 (3): 185 ~ 190 (in Chinese).