文章编号: 1001-3806(2006)02-0198 04

超宽带 Er, Tm 共掺石英光纤放大器稳态研究

郑光威,赵尚弘^{*},李玉江,胥杰,张虎,樊国丽,杨庆华 (空军工程大学 电讯工程学院,西安 710077)

摘要: 分析了波长为 980mm 激光抽运下的 Er³⁺, Tm³⁺ 共掺石英光纤放大器的工作原理, 并根据此工作原理, 建立了 Er³⁺ 与 Tm³⁺ 之间能量转移过程的数学模型。基于速率方程和功率传输方程, 数值模拟了此种光纤放大器稳态工作特性, 给出了不同光纤长度、不同输入抽运功率以及不同掺 Tm³⁺ 浓度下多路光信号放大时输出信号功率谱的变化规律。 仿真结果表明, 当输入抽运功率为 400mW 时, Er, Tm 共掺石英光纤放大器的 3dB 带宽可达 90nm (比传统掺 Er³⁺ 光纤放 大器的增益带宽大两倍以上), 平均增益可达 10dB, 可用于未来密集复用系统 (DW DM)中的宽带放大器件。 关键词: 光纤光学; Er, Tm 共掺石英光纤放大器; 速率方程和功率传输方程; 密集波分复用 (DW DM)

中图分类号: TN 253 文献标识码: A

Analysis of steady state operation of ultra-wide band Er, Tm co-doped silica fiber amplifier

ZHENG Guang wei, ZHAO Shang-hong, LI Yu-jiang, XU Jie, ZHANG Hu, FAN Guo-li, YANG Qing-hua (Institute of Telecommunication Engineering A ir Force Engineering University, X i an 710077, China)

Abstract The operation principal of Er^{3+} , Tm^{3+} cordoped silica ther amplifier is presented when pumped at 980 nm. Depending on the principal them athematical model of energy transfer process between Er^{3+} and Tm^{3+} ions is established Based on the rate and propagation equations numerical sinulation of its steady state operation properties is performed and the sinulation of output power spectrum of several channels ignals as a function of different factors (such as different fiber length different pump power, and different Tm^{3+} ions concentration) is also given the sinulation results show that the amplifying bandwilth of this fiber is up to 90 nm (twice larger than the traditional Er-doped fiber amplifier) and the average gain is up to 10 dB when the pump power is just 400 nW. Its characteristic of ultrarwide band amplifying is useful for DWDM in the near future

Key words fiber optics Er Tm cordoped silica fiber amplifier, nate equations and propagation equations, dense wavelength division multiplexing(DWDM)

引 言

密集波分复用 (DWDM)技术的发展,在一定程度 上解决了通信带宽匮乏的问题。其中,作为密集波分 复用系统中最关键的器件 ——宽带光纤放大器对于密 集波分复用技术的实用化起着至关重要的作用。当 前,掺铒光纤放大器 (EDFA)已能分别放大处于 C 波 段^[1]和 L波段的光信号,并已处于实用化阶段,但随 着人们对于通信容量的不断提高,光纤放大器的低带 宽放大特性已不能满足 DWDM 的发展,并成为限制通 信容量进一步增长的瓶颈。当前,工作带宽在 100 nm 以上的稀土掺杂宽带光纤放大器的研究已受到了广泛 的关注。国外已有实验表明, Er³⁺, Tm³⁺ 共掺石英光 纤可以获得超过 90 nm 的超荧光输出^[2], 如果利用此

作者简介:郑光威(1981-),男,硕士研究生,研究方向为 光通信、光纤放大器。

* 通讯联系人。 E-m ail zhaoshangl@ yahoo com. cn 收稿日期: 2005-03-13、收到修改稿日期: 2005-04-20 种光纤作为放大介质,将可大大提高放大器的工作带 宽,进一步提高系统通信容量。作者正是由此实验出 发,分析了 Er³⁺, Tm³⁺ 共掺这一新型石英光纤在波长 为 980mm 激光抽运下的工作过程。通过理论分析,建 立了在此波长激光抽运下 Er³⁺, Tm³⁺ 之间能量转移过 程的数学模型,并根据速率方程和功率传输方程数值 模拟了此种光纤放大器的稳态工作特性。仿真结果表 明:该光纤放大器放大带宽为 1460nm~1550m,比传 统的 EDFA 的增益带宽高两倍以上,这种超宽带放大 特性无疑给应用于 DWDM 系统的宽带放大器的优化 设计提供了一种可行的方案。

1 理论分析

 $E^{3^{+}}$, Tm³⁺离子能级示意图如图 1所示。 ESA 表示激发态的受激吸收, PQ 表示离子对感应猝灭, MPR 表示多声子弛豫过程, GSA 表示基态受激吸收。当此 掺杂光纤由波长为 980nm 的激光抽运时, 在 $E^{3^{+}}$ 离子 和 Tm³⁺离子之间存在两种能量转移方式, 分别由图 1

Fig 1 The schematic energy-level diagram of Er and Tm ions and energytransfer routes between them

中的单向箭头 ET_1 , ET_2 所标示。处于基态 (4 $I_{5/2}$ 能 级)的 Er^{3+} 离子吸收抽运光被激发到高能级⁴ $I_{3/2}$, 当⁴ I_{3/2}和⁴ I_{5/2}能级之间形成粒子数反转时,就能够放 大处于 C 波段的信号光。处于⁴ I_{3/2}能级上的 E r³⁺离 子同时也可将能量转移给在其周围处于基态的 Tm³⁺ 离子,使其跃迁到 ${}^{3}H_{4}$ 能级,这一能量转移过程如图 1 中 ET_1 所示。由于在石英基质中处于 ${}^{3}H_4$ 能级上的 Tm³⁺离子寿命较长 (大约 334 7^μs^[3]), 因而在此能级 上的 Tm³⁺ 离子可通过吸收 980m 的抽运光被激励到 更高能级³F23,这一过程被称为激发态受激吸收过程 (ESA),但由于多声子弛豫作用,处于³F₂,能级上的 Tm^{3+} 离子立刻无辐射跃迁到 $^{3}F_{4}$ 能级。 Tm^{3+} 离子从基 态被激发到 ${}^{3}F_{4}$ 能级还可直接通过 Er^{3+} , Tm^{3+} 离子 间的能量转移过程来实现,两相邻同处于⁴ I_{13/2}能级上 的 E³⁺离子, 通过能量上转换过程, 将一 E³⁺离子能 量转移到另一 Er^{3+} 离子上,使其跃迁到更高能级 4 $\mathrm{L}_{1/2}$ 上,而自身返回到基态41,5/2能级,被激励到更高能 级⁴ $J_{1/2}$ 上的 Er^{3+} 离子通过与相邻 Th^{3+} 离子之间的相 互作用,将自身能量转移到相邻 Tm⁺⁺离子,使 Tm³⁺离 子从基态跃迁到³F4能级,而自身回到基态,这一能量 转移过程如图 1中 ET2所示。通过这两种能量转移方 式,可将 Tm^{3+} 离子激发到 $^{3}\text{F}_{4}$ 能级,当能级 $^{3}\text{F}_{4}$ 与 $^{3}\text{H}_{4}$ 之间形成粒子数反转时,就能够放大处于 S波段的信 号光。从上述分析可知,当选取适当参数使得能 ${\bf W}^4 {\bf I}_{3/2}$ 与 ${}^4 {\bf I}_{5/2}$ 能 ${\bf W}^3 {\bf F}_4$ 与 ${}^3 {\bf H}_4$ 之间同时形成粒子数反 转时,就能够放大处于 S+C波段的信号光,达到宽带 放大的目的。

2 数学模型

从上述理论分析,可得出波长为 980mm 激光抽运 下各能级粒子数浓度表达式为 (为简化方程,省略了 参数 *z*, *t*):

$$\frac{\partial N_1}{\partial t} = -(W_{13} + W_{12})N_1 + (W_{21} + A_{21})N_2 + A_{31}N_3 + A_{41}N_4 + C_2N_2^2 + T_{25}N_2N_5 + T_{45}N_4N_5$$
(1)

$$\frac{\partial N_2}{\partial t} = W_{12}N_1 - (W_{21} + A_{21})N_2 + (NR_{\mathfrak{V}} + A_{32})N_3 + A_{42}N_4 - 2C_2N_2^2 - T_{25}N_2N_5 \qquad (2)$$
$$\frac{\partial N_3}{\partial t} = W_{13}N_1 - (A_3 + NR_{32})N_3 + (2)$$

$$(NR_{43} + A_{43})N_4 \tag{3}$$

$$\frac{\partial V_4}{\partial t} = C_2 N_2^2 - (A_4 + N R_{43}) N_4 - T_{45} N_4 N_5 \quad (4)$$

$$\frac{\partial V_5}{\partial t} = -T_{25}N_2N_5 - T_{45}N_4N_5 + (A_6 + NR_{65})N_6 + A_{75}N_7 + A_{85}N_8 + A_{95}N_9$$
(5)

$$\frac{\partial V_6}{\partial t} = T_{25}N_2N_5 + (-W_{69} - W_{68} + W_{86} + A_6 + NR_{65})N_6 + (A_{76} + NR_{76})N_7 + A_{86}N_8 + A_{96}N_9 (6)$$

$$\frac{\partial V_7}{\partial t} = -(A_{75} + A_{76} + NR_{76})N_7 + A_{87}N_7 + A_{97}N_7 (7)$$

$$\frac{\partial V_8}{\partial t} = T_{45}N_4N_5 + W_{68}N_6 - (W_{86} + A_{86} + A_{85} + M_{85})$$

$$A_{88} N_{8} + (NR_{98} + A_{98}) N_{9}$$
 (8)

$$\frac{4N_{9}}{\partial t} = W_{69}N_{6} - (NR_{98} + A_{9})$$
(9)

立子数守恒方程为:

$$N_{\rm Er} = N_1 + N_2 + N_3 + N_4 \tag{10}$$

$$T_{\rm m} = N_5 + N_6 + N_7 + N_8 + N_9 \tag{11}$$

式中, N_{1} , N_{2} , N_{3} 和 N_{4} 分别表示处于⁴ $I_{5/2}$, ⁴ $I_{13/2}$, ⁴ $I_{11/2}$ 和⁴ $I_{5/2}$ 能级上的 Er^{3+} 粒子数浓度, N_{5} , N_{6} , N_{7} , N_{8} 和 N_{9} 分别表示处于³ H_{6} , ³ H_{4} , ³ H_{5} , ³ F_{4} 和³ F_{2} , 3能级上的 Tm^{3+} 粒子数浓度, $N_{E,8}$, N_{Tm} 分别表示 Er^{3+} , Tm^{3+} 总的掺杂浓 度。 W_{ij} 表示受激辐射跃迁几率, A_{j} , A_{i} 表示自发辐射 跃迁几率, NR_{ij} 表示无辐射跃迁几率, C_{2} , T_{25} 和 T_{45} 分别 表示能量上转换系数和能量转移系数。 W_{13} , W_{69} 分别 表示 Er^{3+} , Tm^{3+} 对抽运光的受激吸收几率, W_{12} , W_{2} , W_{68} 和 W_{86} 表示信号光的受激吸收和受激辐射几率, 其 数学表达式如下:

$$W_{\rm B} = \frac{\Gamma_{\rm p}}{hcA} \oint_{13} (\lambda) \left[P_{\rm pf}(z, \lambda) + P_{\rm pb}(z, \lambda) \right] \lambda d\lambda$$

$$W_{\rm 69} = \frac{\Gamma_{\rm p}}{hcA} \oint_{69} (\lambda) \left[P_{\rm pf}(z, \lambda) + P_{\rm pb}(z, \lambda) \right] \lambda d\lambda$$

$$W_{\rm 12} = \frac{\Gamma_{\rm s}(\lambda)}{hcA} \oint_{12} (\lambda) \left[P_{\rm sf}(z, \lambda) + P_{\rm sb}(z, \lambda) \right] \lambda d\lambda$$

$$W_{\rm 21} = \frac{\Gamma_{\rm s}(\lambda)}{hcA} \oint_{21} (\lambda) \left[P_{\rm sf}(z, \lambda) + P_{\rm sb}(z, \lambda) \right] \lambda d\lambda$$

$$W_{\rm 68} = \frac{\Gamma_{\rm s}(\lambda)}{hcA} \oint_{68} (\lambda) \left[P_{\rm sf}(z, \lambda) + P_{\rm sb}(z, \lambda) \right] \lambda d\lambda$$

$$W_{\rm 86} = \frac{\Gamma_{\rm s}(\lambda)}{hcA} \oint_{86} (\lambda) \left[P_{\rm sf}(z, \lambda) + P_{\rm sb}(z, \lambda) \right] \lambda d\lambda$$

式中, Γ_{p} 和 Γ_{s} 分别表示抽运光和信号光的重叠因子, h表示普朗克常量, c表示光速, A 表示纤芯截面积, $\sigma_{13}(\lambda)$ 和 $\sigma_{69}(\lambda)$ 表示抽运光的受激吸收截面, $\sigma_{12}(\lambda), \sigma_{21}(\lambda), \sigma_{68}(\lambda), \sigma_{86}(\lambda)$ 分别表示信号光在 Er^{3+} , Tm^{3+} 离子上的受激吸收和受激辐射截面。 $P_{pf}(z, \lambda)$ 和 $P_{pb}(z, \lambda)$ 分别表示前向和后向抽运光功 率, $P_{sf}(z, \lambda)$ 和 $P_{sb}(z, \lambda)$ 分别表示信号波长为 λ 的前 向和后向光功率。

抽运光和信号光的传输方程可表示如下:

$$\pm \frac{dP_{\text{pf pb}}(z,\lambda)}{dz} = -\Gamma_{\text{p}} \left[\sigma_{\text{B}}(\lambda)N_{1}(z) + \sigma_{\theta}(\lambda) \times N_{6}(z) \right] P_{\text{pf pb}}(z,\lambda) - \alpha_{\text{p}}(z,\lambda)P_{\text{pf pb}}(z,\lambda) \quad (14)$$

$$\pm \frac{dP_{\text{sf sb}}(z,\lambda)}{dz} = \left\{ \Gamma_{\text{\&r}}(\lambda) \left[\sigma_{21}(\lambda)N_{2}(z) - \sigma_{12}(\lambda)N_{1}(z) \right] + \Gamma_{\text{sfm}}(\lambda) \left[\sigma_{86}(\lambda)N_{7}(z) - \sigma_{68}(\lambda)N_{6}(z) \right] \right\} P_{\text{sf sb}}(z,\lambda) + \Gamma_{\text{sfrr}}(\lambda)\sigma_{21}(\lambda)N_{2}(z)P_{0\text{\&r}}(z,\lambda) + \Gamma_{\text{sfm}}(\lambda)\sigma_{86}(\lambda) \times N_{7}(z)P_{0\text{sfm}}(z,\lambda) - \alpha_{s}(z)P_{\text{sf sb}}(z,\lambda) \quad (15)$$

式中, α_p , α_s 是背景噪声, $P_{0s} = 2hc^2 / \lambda^{3[4]}$, 表示在信号 光波段范围内的自发辐射值。

3 数值模拟

为便于模拟仿真,可对上述过程作如下假设:(1) 由于³H₅和³F₂3能级上的粒子数寿命非常短,分别为 0 007 μ s和 0 0004 μ s^[3],因而在这两能级上的粒子数 可被忽略;(2)由于从⁴ I₁₁2到⁴ I₃₂能级的多声子过程 很迅速,因而可以忽略⁴ I₁₁2能级上的粒子数;(3)由于 共掺石英光纤中 Er³⁺,Tm³⁺离子的相互作用以及 Tm³⁺离子的存在使得 Er³⁺离子很难聚集,抑制了处 于⁴ I₃₂能级上的 Er³⁺离子之间的能量上转换过程,因 此,处于⁴ I₅2能级上的粒子数可忽略;(4)基于同样的 原因,从 Er³⁺离子到 Tm³⁺离子的能量转移过程 ET₂ 可被忽略。(14)式和(15)式可通过 RungerKutta迭代 算法来解决。本文中模拟仿真所用到的参数^[2,5-9],如 不加说明,均如表 1所示。

parameter	valu es	param ete r	va lu es	param ete r	values
$N_{\rm Tm}$ /(ions• m ⁻³)	8. 0×10^{24}	σ_{13} / m^2	2×10^{-25}	n_1	1. 46
$N_{\rm Er} / ({\rm ion s^{\bullet} m^{-3}})$	8. 0×10^{24}	σ_{69} / m^2	5×10^{-25}	Δn	0. 015
$A \ /m^2$	8 55 × 10 ^{- 12}	σ_{21} / m^2	- data from Ref [6], [7]	α_s /m^{-1}	4 2× 10 ⁻³
$\lambda_{\rm p}$ / nm	980	σ_{12}/m^2	data from Ref [6], [7]	$\alpha_{\rm p}$ /m ⁻¹	6 5× 10 ⁻³
$\lambda_{\rm s}$ / nm	1420~ 1580	σ_{86} m ²	data from R ef [8]	pump powerP _p /W	0.4
$T_{25} / (m^3 \bullet s^{-1})$	2 2 × 10 ^{- 21}	6 68 /m ²	determined according to Ref [3]		

Table 1 Some parameters used in the simulation

3 1 单路信号增益谱特性随光纤长度的变化 图 2中给出了在抽运功率为 400mW 时不同光纤

Fig 2 Output gain spectrum of a single channel signal at different fiber length

长度下的单路信号的增益谱 (信号功率为 1 μ W)。从 图中可以看出, 3dB 带宽随着光纤长度的变化而变化, 当光纤长度为 1.85m 时, 3dB 带宽达到最大值 (90nm),范围为 1460nm~1550nm;从图中还可以发 现,长波长范围光信号的衰减速率要比短波长快得多, 其主要原因是由 Er^{3+} , Tm^{3+} 离子的辐射特性决定的。 在此共掺放大系统中, Er^{3+} 离子可等效为三能级系统, 而 Tm^{3+} 离子等效为四能级系统, 当光纤输出端未形成 有效粒子数反转时, Er^{3+} 离子对长波长信号的受激吸 收要远远大于其受激辐射, 而 Tm^{3+} 离子则对短波长信 号的受激吸收较弱。因此, 光纤长度是影响 Er^{3+} , Tm^{3+} 共掺光纤放大器带宽特性的一个主要因素。

- 3 2 单路信号增益谱特性随抽运功率的变化
 - 图 3中给出了不同抽运功率下,单一信号 (功率

Fig 3 Output gain spectrum of a single channel signal at different pump power

为 1^{µW})在最佳光纤长度下(即带宽特性最优化时)的 增益谱线。从图中可以看出,信号增益随抽运功率的 增加而不断增大,但增益平坦度特性却随着抽运功率 的增大而不断下降,当抽运功率为 0 45W 时,3dB带 宽被分割为两个独立的部分,这也就违背了设计此种 光纤放大器的初衷,因而抽运功率也是影响此光纤放 大器宽带放大特性的一个主要因素。

3 3 不同 Tm³⁺ 掺杂浓度下单路信号增益谱特性

图 4中给出了不同 Tm³⁺离子掺杂浓度时、单路光

Fig 4 Output gain spectrum of a single channel signal at different Tm ions concentration

- 信号(信号功率为 1^{LW})在其最佳光纤长度下(即宽带 特性最优化时)的增益谱线。从图中可以看出,当 Tm³⁺离子浓度不断增加时,最佳光纤长度不断减小, 并且其平均增益也呈递减态势。因此,Tm³⁺离子的掺 杂浓度是影响此种光纤放大特性的一个主要因素。
- 3 4 多路信号放大时输出功率谱特性

图 5中给出了 10路光信号输出功率谱 (信号功率)

Fig. 5 Output power spectrum of ten channel signals with the same power (1 μW)

均为 – 30dBm)。此 10路信号波长从 1460nm 到 1550nm,波长间隔为 10nm。从图中不难看出,这 10 路信号的最大增益为 12dB,对应波长为 1470nm 和 1530nm处的信号;最小增益为 9dB,对应波长为

(上接第 197页)

- [12] HUANG X Q, CUIY P. Degeneracy and split of defect states in photonic crystals [J]. Chinese Physics Letter 2003, 20(10): 1721~ 1724
- [13] BORN M, WOLF E. Principles of optics [M]. Beijing Science

1500nm 和 1550nm 处的信号, 3dB 带宽可达 90nm (1460m~1550nm),这充分显示了此种光纤的宽带 放大特性。

4 结 论

通过上述分析,并且与国外实验^[2]相比较(该实验指出在波长为980mm激光抽运下,Er³⁺,Tm³⁺共掺 石英光纤具有3dB带宽共90m(1460mm~1550mm) 的超荧光输出,以上仿真所得的放大特性与其基本一 致),可以发现据此实验建立起来的数学模型,并由此 模型而建立起来的模拟仿真,可较好地解释和说明 ErTm共掺石英光纤的工作特性及其具有超宽带放大 特性的主要原因,从而可以看出,此种光纤可以为今后 实现宽带放大器的开发提供一种可行的方案,为 DWDM系统的进一步发展提供技术支持。

文献

- Y AH EL E, HA RD A Efficiency optimization of high power ErYbcodop ed fiber and Hiers for DWDM [J]. J O S A, 2003, B20 (6): 1189~ 1197.
- [2] JEONCH. OH H, HAN SR et al Broadband amplified spontaneous er mission from an Er³⁺, Tm³⁺ -dopoed silica fiber [J]. Opt Lett 2003 28(3): 161 ~ 163

ACKSON SD, K NG TA. Theoretical modeling of Tm-doped silica fr ber lasers [J]. IEEE Journal of Lightwave Technology, 1999, 17(5): 948~956

- [4] HENRY C H. Theory of spontaneous emission noise in open resonators and its application to lasers and optical amplifier [J]. IEEE Journal of Lightwave Technology 1986, LT-4(3): 288~297.
- [5] DONG S F, ZHAO S H, ZHAN S B et al. Operation principles and nur merical analysis of double-cladding erbium-ytterbium cordoped optical fiber amplifiers [A]. HighrPower Lasers and Applications II [C]. Shanghai P roc of SPIE, 2002. 28 ~ 36
- [6] PASQUALE F D. Modeling of highly efficient grating feedback and Fabry-Perot Er³⁺ -Yb³⁺ cordoped fiber lasers [J]. EEE J Q E, 1996 32(2): 326~332.
- [7] BARNESW I, LAM NG R J TARBOX E J et al. Absorption and Em ission cross section of Er³⁺ doped silica fibers [J]. IEEE J Q E, 1991, 27 (4): 1004~1009
- [8] DIGONNET M JF. R ear earth doped fiber lasers and an plifiers [M]. 2nd ed, N ew Y ork: M arcelD ekker Inc 2001 91.
- [9] XU J PRABHUM, LU J et al Efficient double- clad thulium-doped fr ber laserwith a ring cavity [J]. Appl Opt 2001, 40(12): 1983~ 1988

Press, 1978 82~ 88 (in Chinese).

[14] FANG Y T, SHEN T G, L N G H. Photo wave propagation in one dimension random photonic crystal [J]. Laser Technology, 2004 28 (2): 153~155(in Chinese).