文章编号: 1001-3806(2005)04-0343-04

直接金属选区激光烧结热应力场有限元模拟

沈显峰1,王 洋2,姚 进1*,汪法根2,杨家林2

(1.四川大学制造科学与工程学院,成都 610065;2 中国工程物理研究院机械制造工艺研究所,绵阳 621900)

摘要:在考虑随温度变化而变化的热传导、比热容等热物性参数的作用下,建立了直接金属多道烧结的三维有限元分析模型。采用先进行温度场分析、再进行应力场分析的间接热力耦合策略。模拟结果显示,随着烧结过程的进行,由于已烧结部分的影响,最大热应力有减小的趋势;在扫描烧结道的前方有比后方更大的应力分布,这与实验结果相吻合。

关键词:快速原型制造;选区激光烧结;数值模拟;有限元分析;热应力场

中图分类号: TG156 99 文献标识码: A

Finite element simulation of thermal stress distribution in direct metal laser sintering

SHEN X ian-feng¹, WANG Yang², YAO J in¹, WANG Fa-gen², YANG J ia-lin²

(1. School of Manufacture Science and Engineering, Sichuan University, Chengdu 610065, China; 2. Institute of Machinery Manufacturing Technology, China Academy of Engineering Physics, Mianyang 621900, China)

Abstract: Taking into account temperature-dependent thermal conduction and heat capacity, a three-dimensional transient finite element model was established A sequentially analysis of coupled thermal-stress was employed. Some conclusions related to the simulation results are made: maximum thermal stress lessens with sintering going on owing to effect of sintered region; the region ahead of sintering has greater stress distribution than behind.

Key words: rapid prototyping and manufacturing; directimetal laser sintering (DMLS); numerical simulation; finite element method; thermal stress distribution

引 言

全球化的市场竞争要求制造企业以低成本高速度 地响应极具个性化的客户需求,相应的,快速原型、快 速制造发展迅速。其中,选区激光烧结能够将聚合物、 金属、陶瓷等粉末根据 CAD 模型直接烧结成为三维的 零件,且成型过程中不需要模具,零件的复杂度不受限 制。直接金属选区激光烧结是一种利用高功率激光直 接将金属粉末烧结成三维实体的快速成型方法^[11],由 于其能成型金属零件而被越来越多的研究人员所关 注。但在成型过程中,由于激光束急速加热、迅速冷 却,不可避免地会引起热应力分布的显著不均衡,进而 导致烧结件的变形、甚至断裂。选区激光烧结的数值 模拟对揭示其成型机理具有重要作用,掌握烧结过程 中热应力场动态分布对于优化成型工艺、降低热应力 产生的变形具有重要意义。

基金项目:中国工程物理研究院基金重大资助项目 (2002Z0303)

作者简介:沈显峰(1977-),男,博士研究生,主要从事选 区激光烧结技术研究。

* 通讯联系人。E-mail: jinyao163@163.com 收稿日期: 2004-07-30;收到修改稿日期: 2004-09-08 对聚合物粉末、覆膜金属粉的选区激光烧结应力 场模拟已经有充分研究^[2~4],但对于金属粉末的选区 激光烧结的研究还不够充分,如:FISHCHER等建立了 一个单粉末颗粒区域内的应力场模型,未考虑移动光 源的影响^[5];MATSUMOTO等在考虑了移动热源和相 变潜热的影响下,建立了单层烧结的二维模型^[6]。

作者基于 ANSYS环境建立了三维的直接金属选 区激光烧结的有限元分析模型,在模型中考虑了随温 度变化的导热系数、比热容等热物性参数的影响。对 热力耦合采用了先分析温度场,再分析应力场的间接 耦合策略。针对 25^{*}钢进行了有限元模拟,对不同扫 描烧结道、不同时刻的热应力分布进行了讨论和分析。

1 模型描述

烧结过程的有限元模型如图 1所示。用 k, l, l, 分别表示粉床在 x方向、y方向、z方向的尺寸,则烧结 之前,整个粉床的三维尺寸为 l, ×l, ×l,即 3mm × 7mm ×1mm,其中烧结区域为 5mm ×0 8mm。激光能 量的输入为高斯分布,其以热流密度的方式输入到粉 床中。激光光束多道扫描路径采用光栅扫描方式,如 图 1中折线所示,扫描间距为 0 2mm。网格的大小,

Fig 1 Finite element analysis model of selective laser multi-track sintering 在激光束扫描轨迹近的区域采用 0 1mm ×0 1mm,其 它区域采用 0 3mm ×0 3mm进行划分。模型中能量 的散失包括自然对流散热和辐射散热^[7]。在模拟烧 结过程中的应力场分布时,假定模型固定在基板上,限 定底面的所有自由度。

2 边界条件与初始条件的确定

烧结前,假设粉床具有一致的初始温度 T_0 ,在室 温下或者预热时间足够长,这种条件易于满足。温度 场初始条件可以由右式表达: $T(x, y, z, 0) = T_0$ (1) 粉床上表面的散热 (y = 0)主要是通过自然对流和辐 射方式进行的,其温度场边界条件为:

 $-K \left. \frac{\partial T}{\partial y} \right|_{y=0} = \varepsilon_{\theta} \sigma \left(T^{4} - T^{4}_{sur} \right) + h \left(T - T_{env} \right)$ (2)

式中, K为热传导率, ε_0 表示实际物体的有效辐射率 (黑度), σ 为斯蒂芬 波尔兹曼常数,约为 5.67 ×10⁻⁸ W/(m²·K⁴), T_{sur} 指空间环境温度, T_{env} 指空气温度, h为对流换热系数。假设粉床底面无热量损失,其温度 为 T_0 ,即:

 $- K \frac{\partial T}{\partial y}\Big|_{y=30} = T_0$ (3)

3 高斯型热源的模拟

在烧结过程中,激光能量是以热流密度 q输入到 粉床中的,其服从高斯分布,即:

$$q = \frac{2AP}{\pi w^2} \exp(-\frac{2r^2}{w^2})$$
(4)

式中,w为光斑半径,即热流密度降为光斑中心热流密度 1/e²处距光斑中心的距离;A为粉床对激光束的吸收率;P为激光功率。在图 1所示的直角坐标系下,光束从起始点(x₀,y₀,z₀)到(x₀,y₀,z)以速度 v沿 z轴正方向移动时间 to r为粉床表面上一点到光斑中心的距离,可由下式表示:

 $r^2 = (x - x_0)^2 + (z - x_0 - vt)^2$ (5) 光源移动的模拟如图 2所示。高斯光源采用 4 ×4的 光强积分区域近似,该积分区域可分为 3种不同强度 的光强,如图中实体填充图形所示;光源每次向前移动 一个单元格,如图中从实线轮廓到虚线轮廓的移动。

Fig 2 Simulation of moving laser

4 相变潜热的处理

在选区激光烧结过程中,存在着相变过程,即在加 热过程从固态熔化为液态和在冷却过程中从液态凝固 为固态。相变潜热指的是在相变过程中吸收或放出的 热量。对于金属等晶体材料而言,相变潜热是不可忽 略的因素之一。ANSYS通过定义材料的焓随温度变 化考虑相变潜热。焓 H的单位是 J/m³,是密度 ρ 与比 热容 c的乘积对温度 T的积分: $H = \rho \int (T) dT$ (6)

5、移动热源的模拟及温度场与应力场的耦合 / 策略

▲ 通过 ANSYS的参数化设计语言 (ANSYS parametric design language, APDL)模拟激光束的移动,这主要 是借助 APDL在不同的时刻在不同的位置提供相应的 热源输入。在求解过程中,第 1次循环假设模型具有 统一的初始温度 T₀和初始的边界条件;在接下来的循 环中,首先去除上次的热源输入,在新的位置加上热 源,并且将上一次计算的结果温度作为本次的初始条 件来计算本次的热传导矩阵和比热矩阵;这样一直循 环下去,直到本烧结道扫描完成,改变激光扫描方向,

Fig 3 Coupling algorithm of thermal and stress fields

在下一烧结道的位置开始模拟,直至所有的烧结道、烧 结过程全部循环结束。

温度场与应力场的耦合方法有直接法与间接法。 与直接法相比,间接法的使用更灵活,作者采用间接 法。间接法就是先进行温度场分析,然后根据读入温 度场分析的结果进行应力场的分析。温度场与应力场 的耦合算法如图 3所示。

6 热物性参数的确定

在影响粉床烧结性能的热物性参数中,粉床的有效导热系数最为重要,并且其传热机理很复杂,其准确的确定也很困难。假设所有的粉末颗粒都为球形,且不存在接触变形,则粉床的有效热传导系数 k。可以由下式进行估计^[8,9]:

$$\frac{k_{\rm e}}{k_{\rm g}} = (1 - 1 - \phi) + \frac{\phi k_{\rm r}}{k_{\rm g}} + \frac{\sqrt{1 - \phi}}{1 - \frac{k_{\rm g}}{k_{\rm g}}/k_{\rm s}} + \frac{2}{1 - \frac{1}{k_{\rm g}}/k_{\rm s}} + \frac{k_{\rm g}}{k_{\rm g}} + \frac{1}{1 - \frac{k_{\rm g}}{k_{\rm g}}/k_{\rm s}} + \frac{1}{k_{\rm g}} + \frac{k_{\rm r}}{k_{\rm g}}$$
(7)

式中, k_g 和 k_s 分别为环境气体(加保护气时为保护气, 不加为空气)的导热系数和固体材料的导热系数, k_r 是粉床中由辐射引起的热传导系数, ϕ 为初始孔隙率, 可表示为: $k_r = 4F\sigma T_0^2 D_0$ (8)

 $k_r = 4F \circ I_p D_p$ 式中, σ 为 Stefan-Boltzmann常量, D_p 为粉末颗粒的平 均直径, T_p 为粉末微粒的温度, F为表观系数, 可近似 取为 $\frac{1}{2}$ 。

7 结果与讨论

在模拟过程中,采用 25*钢粉末作为烧结材料,其 相应的参数^[10]如表 1所示。

Table 1 Physical properties of steel 25[#]

	<i>T</i> / °C	20	250	500	750	1000	1500	1700	2500
	$K/(W \cdot m^{-1} \cdot K^{-1})$	81.1	72. 1	63. 5	50. 3	39.4	29. 6	29.4	31. 6
	$c/(\mathbf{J} \cdot \mathbf{kg}^{-1} \cdot \mathbf{K}^{-1})$	460	480	530	675	670	660	780	820
	$\rho/(kg \cdot m^{-3})$	7820	7700	7610	7550	7490	7350	7300	7090
	μ	0. 28	0. 29	0. 31	0.35	0.4	0.45	0.48	0.5
	α /10 $^{-5}$ °C $^{-1}$	1. 1	1. 22	1. 39	1. 48	1. 34	1. 33	1. 32	1.31
	$E/10^5$ MPa	2. 05	1. 87	1.5	0. 7	0. 2	0. 19	0. 18	0.12

notes: K—thermal conductivity; c—specific heat; ρ —density; μ —Poisson's ration; α —thermal expansion coefficient; E— elastic modulus

模拟是在下列条件下进行的:激光功率为 200W, 光斑直径为 0 4mm,扫描速度为 0 04m/s,粉末颗粒平 均直径为 40μm,粉床热吸收率为 0 1,粉床初始孔隙 率为 0 395;粉床有效辐射率为 0 8;粉床上表面非照 射区域施加自然对流换热条件,温度为 20℃,自然对 流换热系数取为 10。

Fig 6 Thermal stress distribution at 0.6s

刻的应力分布图。从图中可以看出:(1)最大应力为 10⁴MPa数量级,接近 25[#]钢的屈服极限,这是一个相当 大的应力,为了避免烧结过程过大的应力和变形造成 烧结的中断,需要阻止这种趋势,如使用基板,使烧结 层粘在基板上;(2)烧结过程中的最大应力随激光束 扫描烧结道的增加而逐步减少,从 0.1s的 0.176 × 10⁵MPa,到 0.35s的 0.162 ×10⁵MPa,直至 0.35s的 0.146×10⁵MPa:这是由于最初烧结时.温度分布极不 均衡,温度梯度大,因此应力也就大,随着烧结的进行, 由于已烧结部分的预热作用,温度梯度变小,应力也相 应减少,这与实验相吻合,最初的扫描道易于发生粉末 飞溅和翘曲现象:(3)在扫描烧结道的前方比其后方 具有更大的应力分布,从图 5、图 6中可以清楚地看到 这种趋势:这主要由于已烧结部分对正在烧结部分有 加热的作用,并且在扫描烧结道的后方比其前方温度 梯度小,因此其应力分布也小。至于图 4,作为第 1道 烧结.扫描烧结道的后方和其前方应该具有对称的应 力分布,而模拟结果显示,其后方具有较大的应力分布

是由于烧结道距其后方边沿的距离更近的原因造成 的。可通过对粉末进行预热来减少应力的不均衡性。 这些趋势与先前的研究^[6]相吻合。

8 结 论

对直接金属选区激光烧结过程的瞬态热应力场分 布进行了数值模拟,并形成如下结论:(1)建立了直接 金属选区激光烧结的三维瞬态有限元分析模型,在模 型中考虑了热传导、比热容等变物性参数的影响。热 量在粉床中的传播机制复杂,其导热系数的考虑可以 通过折算的方式进行。(2)对于多道烧结的热力耦合 分析,激光移动热源可以通过 ANSYS的 APDL进行模 拟,热力耦合采用间接法具有更大的灵活性。(3)在 烧结进行过程中,由于已烧结部分的影响,最大热应力 有逐渐减少的趋势。(4)在扫描烧结道的前方比其后 方具有更大的热应力分布,这是由于扫描烧结道前方 具有更大的温度梯度。

参考文献

[1] JANGW, XU Zh X, DALGARNO KW et al Numerical prediction of thermal stresses in direct metal SLS process [A]. Proceeding of the Second International Conference on Rapid Prototyping & Manufacturing 2002 [C]. Beijing: Tsinghua University Press, 2002. 64~69.

(上接第 342页)

laser jammer can simultaneously jam the elder infrared missiles operating 1000nm \sim 2000nm spectral region and the new infrared missiles operating 3000nm \sim 5000nm, it pethaps is very useful that the signal and idler are simultaneous outputs The laser jamming source of high bright and high directionality can easy saturate detectors of infrared missiles; moreover the chemical absorption spectra of the light hydrocarbons in the infrared region 3000nm \sim 4000nm allows the use of mid-infrared D AL lidar techniques for petroleum exploration and pipeline monitoring these chemicals^[8].

References

KATO K Parametric oscillation 3. 2μm in KTP pumped at 1. 064μm
[J]. IEEE J Q E, 1991, 27 (5): 1137~1139.

- [2] CHLDS T H C, TONTOW IA E Selective laser sintering of a crystalline and a glass-filled crystalline polymer: experiments and simulations
 [J]. Proc MechE, 2001, B215: 1481~1495.
- [3] GRECO A, MAFFEZZOLIA. Polymer melting and polymer powder sintering by themal analysis [J]. Journal of Themal Analysis and Calorimetry, 2003, 72 (3): 1167~1174.
- [4] CHLDS TH C, BERZNSM, RYDER G R et al Selective laser sintering of an amomphous polymers-simulations and experiments [J]. Proc MechE, 1999, B213: 333 ~349.
- [5] FISHCHER P, ROMANO V, WEBER H P et al Modeling of near infrared pulsed laser sintering of metallic powders [J]. SPIE, 2003, 5147: 292~298.
- [6] MATSUMOTO M, SH DM IM, OSAKADA K et al Finite element analysis of single layer forming on metallic powder bed in rapid prototyping by selective laser processing [J]. International Journal of Machine Tools & Manufacture, 2002, 42 (1): 61 ~67.
- [7] W LL AMS J D, DECKARD R. Advances in modeling the effects of selected parameters on the SLS process [J]. Rapid Prototyping Journal, 1998, 4 (2): 90 ~100
- [8] SIH S S, BARLOW J W. Measurement and prediction of the thermal conductivity of powders at high temperature [A]. Proceedings of the 5th Annual SFF Symposium [C]. Austin: the University of Texas, 1994. 321~329.
- [9] SIH S S, BARLOW J W. The prediction of the thermal conductivity of powders [A]. Proceedings of the 6th Annual SFF Symposium [C]. Ausfin: the University of Texas, 1995. 397 ~401.
- [10] 鹿安理,史青宇,赵海燕 et al 厚板焊接过程温度场、应力场的三维有限元数值模拟 [J].中国机械工程,2001,12(2):183~186.
- [2] BUDN I P A, KN IGHTSM G, CH ICKL IS E P *et al* Kilohertz AgGaSe₂ optical parametric oscillator pumped at $2\mu m$ [J]. Opt Lett, 1993, 18 (13): 1068 ~1070.
- [3] M IYA KE C I, LOW ENTHAL D D. Efficient mid-infrared conversion technologies [J]. SP IE, 1995, 2374: 215 ~224.
- [4] LAVIR, ENGLANDER A, LALLOUZ R. Highly efficient low-threshold runable all-solid-state intracavity optical parametric oscillator in the midinfrared [J]. OptLett, 1996, 21 (11): 800~802.
- [5] COLV LLE F G, MCGUCKN B T. OPOs tune solid-state CW lasers from 3 to 5 microns [J]. Laser Focus World, 1998, 34 (11): 83 ~87.
- [6] 王克强,裴 博. 3. 76μm中红外激光参量振荡器 [J].中国激光, 2000, A27 (8): 691 ~ 693.
- [7] 兰信钜,黄国标,张渝楠.激光技术 [M].长沙:湖南科学技术出版社,1983.52~53.
- [8] CE IGER A R, PRASAD S N. Mid-infrared D IAL lidar for petroleum exploration and pipeline monitoring [J]. SP IE, 1995, 2374: 240 \sim 248.