文章编号: 1001 3806(2004) 06 0636 03

SLA 增益谱波长分布和漂移对皮秒光脉冲的影响

吴正茂^{1,2},夏光琼^{1,2},潘英俊²

(1. 西南师范大学物理学院, 重庆 400715; 2. 重庆大学光电技术及系统教育部重点实验室, 重庆 400044)

摘要: 在描述皮秒脉冲通过半导体光放大器(SLA) 动态过程的理论模型中引入 SLA 增益谱的波长分布和漂移,数值计算了增益谱的波长分布和漂移对放大脉冲实时分布的影响。结果表明,具有相同分布、不同波长的输入脉冲经 SLA 后,输出脉冲的形状、峰值功率以及峰值出现的时间均不同;在不同的 SLA 增益下(即 SLA 在不同的偏置电流下),是否包含增益谱的波长分布和漂移对皮秒脉冲经 SLA 放大后的分布有显著影响。

关键词:半导体光放大器;皮秒光脉冲;增益谱;波长分布

中图分类号: TN248.4;TN929.11 文献标识码: A

Influences of the wavelength distribution and shift of the gain spectrum on picosecond optical pulses in semiconductor light amplifiers

WU Zheng-mao^{1,2}, XIA Guang-qiong^{1,2}, PAN Ying-jun²

(1. School of Physics, Southwest Normal University, Chongqing 400715, China; 2. The Key Laboratory for Optoelectronic Technology & System of Ministry of Education, Chongqing University, Chongqing 400044, China)

Abstract: By introducing the wavelength distribution and shift of the gain spectrum of semiconductor light amplifiers (SLA) into the theoretical model that describes the dynamic process of picosecond optical pulses passing through the amplifiers, the influence of the wavelength distribution and shift of the gain spectrum on the removal distribution of amplified pulses is numerically studied. The results reveal that for the input pulses with the same temporal distribution but different wavelengths passing through the SLA, the output pulses have obvious distinctions in their shapes such as the peak power and the time of the appearance of the peak; under the SLA biased at various currents, the output pulse has obvious differences between including and neglecting the gain shift and wavelength dependence for a input pulse passing through the SLA.

Key words: semiconductor light any lifers (SLA); picosecond optical pulse; gain spectrum; wavelength distribution

引 言

随着半导体技术的发展,半导体光放大器 (SLA)的性能已得到极大改善。SLA 已被广泛地应 用到光纤通信系统的众多领域,由于其在高速光开 关、全光波长转换、2R 或3R 再生以及在线放大等诸 多方面均具有广阔的应用前景,因而倍受人们关 注^[1~7]。近10年来,SLA 对超短光脉冲的动态响应 已有广泛的理论和实验研究^[8~13]。随着人们对超 短光脉冲经 SLA 放大这一复杂的物理过程的认识 的逐步提高,用于描述这个动态过程的物理模型也

基金项目:教育部科学技术研究基金重点资助项目 (03140);重庆市应用基础研究基金资助项目(2003-7983)

作者简介:吴正茂(1970),男,教授,博士,从事激光物 理、光通信等方面的研究工作。

E-mail: zmwu@ swnu. edu. cn

收稿日期: 2003 11 28; 收到修改稿日期: 2004 05 31

逐步得到改善。最初的理论模型是由 AGRAWAL 和 OLSSON 提出的,该模型包含了由于受激辐射消耗 载流子引起的 SLA 增益饱和^[8],以后的模型逐步发 展到包含带内载流子受热和频谱烧孔引起的增益压 缩^[9~11],增益非对称和漂移^[11,14,15],随位置和时间 变化的载流子寿命^[14~16]等物理机制。然而,由于 采用包含上面所有机制的模型在进行数值模拟时比 较复杂,所以一般的模型都只包含部分的物理机制。 作者提出了一个描述 SLA 对皮秒脉冲的放大这一 物理过程、且包含上面所有机制的理论模型,通过计 算机进行数值求解,得到了放大皮秒脉冲的时域分 布,并着重讨论了增益谱的波长分布和漂移对经 SLA 放大后的脉冲实时分布的影响。

1 理论模型

假定 SLA 两端面的反射率为 0, 考虑到上面所 提到的物理机制, 描述光脉冲经 SLA 放大后的速率 方程可写为:

$$\frac{\partial N(z, T)}{\partial T} = \frac{1}{eV} - F(N) - \frac{g_{\rm m}(z, T)}{\eta_{\rm \omega\sigma}} P(z, T)$$
(1)

$$\frac{\partial P(z,T)}{\partial z} = g_{\rm m}(z,T)P(z,T) \qquad (2)$$

(1) 式中, *F*(*N*) 表征载流子复合, 可表示为:

 $F(N) = AN + BN^{2} + CN^{3} = N/T_{c}$ (3) 式中, N 为载流子数密度, $T = t - z/v_{g}$, 其中 t 为时 间, z 为传输距离, v_{g} 为 SLA 中的群速度, 是在随脉 冲运动的参照系中的所测得的时间, I 为 SLA 的偏 置电流, e 为电子电荷, V 为 SLA 有源层的体积, $\Pi \omega$ 为光子能量, \circ 为有源层横截面积, P 是光功率, A, B, 和 C 分别表征非辐射复合, 辐射复合和俄歇过 程, T_{c} 为随位置和时间变化的载流子寿命, 在数值 模拟过程中为了简化常被认为是常数^[10~12], g_{m} 为 SLA 的增益, 可表示为^[11~13]:

 $g_{m}(z,T) = \Gamma g(N) / [1 + \epsilon P(z,T)]$ (4) 式中, Γ 为限制因子, ϵ 为描述带内载流子受热和频 谱烧孔效应的增益压缩因子, g(N) 为增益系数, 可 表示为: $g(N) = a(N - N_0) - a_1(\lambda - \lambda_N)^2 + a_2(\lambda - \lambda_N)^3$ (5)

式中, a 为微分增益系数, a_1 和 a_2 为表征增益带宽 和增益分布非对称性的经验常数, N_0 为透明载流子 数密度, λ 为输入脉冲的波长, λ_v 为跟载流子密度 有关的增益峰值波长, 写成:

 $\lambda v = \lambda 0 - a_3 (N - \Delta v_0)$ (6)

式中, λ_0 为 SLA 透明时增益峰值波长, a_3 为表征增 益峰值波长随腔内载流子数密度发生漂移的经验常 数。

根据(1)式~(6)式,可以对给定的输入脉冲经 过SLA 放大后出射脉冲的时域分布进行数值模拟, 进而可以对增益分布和漂移的影响进行研究。

2 结果和讨论

假定输入脉冲为 $P_{in}exp[-(T/T_0)^2]$ 型的高斯分 布, P_{in} 为峰值功率, T_0 表征脉宽, 并且认为输入脉冲 为单频光, 这在皮秒脉冲的谱宽跟 SLA 的带宽相比很 小的情形下是可行的。计算中所用的数据为: L = 0. 50×10^{-3} m, $\sigma = 0$. 18×10^{-12} m², a = 2. 5×10^{-20} m², a_1 = 7. 4×10^{18} m⁻³, $a_2 = 3$. 155×10^{25} m⁻⁴, $a_3 = 3 \times 10^{-32}$ m⁴, $\mathcal{E} = 0.2$ W⁻¹, $N_0 = 1$. 1×10^{24} m⁻³, A = 1. 5×10^8 s⁻¹, B = 2. 5×10^{-17} m³ s⁻¹, C = 9. 4×10^{-41} m⁶ s⁻¹, $\lambda_0 = 1$. 55µm, $\Gamma = 0.3$, $P_{in} = 10$ mW, $T_0 = 20$ ps_o

图 1 中给出了 SLA 的偏置电流为 100mA 时,具 有相同分布、不同波长的输入脉冲经 SLA 后的实时 分布,曲线分别对应输入脉冲的波长为 1530nm, 1540nm, 1550nm 和 1560nm。从图中可以看出,除了 因不同波长的增益不同引起的峰值功率不同外,输 出脉冲的形状和峰值出现的时间也随输入脉冲的波 长不同而异。这些现象的出现是因为不同波长获得 的增益不同,从而不同波长下的增益饱和程度也不 相同。

Fig. 2 Temporal profile of the amplified pulse with or without including the gain shift and wavelength dependence for a input pulse at 1550nm and the SLA biased at different current respective ly, where thick lines include the gain shift and the wavelength dependence(ie, a_1, a_2 and a_3 have values), and thin lines neglect the gain shift and the wavelength dependence (ie, a_1, a_2 and a_3 are taken to zero)

在不同的 SLA 增益下(即 SLA 在不同的偏置电 流下),忽略增益谱的波长分布和漂移时皮秒脉冲经 SLA 放大后的分布变化已有分析^[10]。图 2 中对包 含和忽略增益谱的波长分布和漂移两种不同情形下 输出脉冲的分布作了比较,输入脉冲的波长为 1550m, SLA 的偏置电流分别为 60mA, 80mA, 100mA, 120mA。从图中可以看出有明显的差异,这 是因为随着偏置电流的增大增益峰波长将向短波长 方向移动,包含增益谱波长分布和漂移下获得的增 益跟忽略增益谱波长分布和漂移下获得的增 着跟忽略增益谱波长分布和漂移下获得的增

3 结 论

采用比较完整的理论模型来描述 SLA 对皮秒 脉冲的放大这一物理过程,并通过计算机进行数值 求解,得到了放大皮秒脉冲的时域分布,着重讨论了 增益谱的波长分布和漂移对经 SLA 放大后的脉冲 实时分布的影响。结果表明:具有相同分布、不同波 长的输入脉冲经 SLA 后,输出脉冲的形状、峰值功 率以及峰值出现的时间均不同;在不同的 SLA 增益 下(即 SLA 在不同的偏置电流下),是否包含增益谱 的波长分布和漂移对皮秒脉冲经 SLA 放大后的分 布有显著影响。

- 参考文献
- SPIEKMAN L, WIESENFELD J, GNAUCK A et al. 8 × 10Gbit/s DWDM transmission over 240km of standard fiber using a cascade of semiconductor optical amplifiers [J]. IEEE Photon Technol Lett, 2000, 12: 1082- 1084.
- [2] SUN Y, SRIVASTAVA A, BANERJEE S et al. Error free transmission of 32 × 2. 5Gbit/s DWDM channels over 125km using cascaded irr line semiconductor laser amplifiers [J]. Electron Lett, 1999, 35: 1863 ~ 1864.
- [3] ONISHCHUKOV G, LOKHNYGIN V, SHIPNLIN A et al. 10Gbit/s transmission over 1500km with semiconductor optical amplifiers [J]. Electron Lett, 1998, 34: 1597~ 1598.

- [4] LEUTHOLD J, MIKKELSEN B, RAYBON G et al. All-optical wavelength conversion between 10 and 100 Gbit/s with SOA delayed interference configuration [J]. Opt & Quantum Electron, 2001, 33: 939 ~ 952.
- [5] PLEUMEEKERS J, KAUER M, DREYER K *et al.* Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength [J]. IEEE Photon Technol Lett, 2002, 14:12~ 14.
- [6] STUBKJAER K, KLOCH A, HANSEN P et al. Wavelength converter technology [J]. EICE Trans Commun, 1999, E82 B: 390~ 399.
- [7] TSURUSAWA M, NISHMURA K, USAMI M. First demonstration of pattern effect reduction in 40Gbit/s semicondcutor optical amplifier based all optical switch utilizing transparent ov assist light [J]. Japan J A P, 2002, 41: 1199~ 1202.
- [8] ARGRAWAL G P, OLSSON N A. Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers [J]. IEEE J Q E, 1989, 25:2297~2305.
- [9] TANG J M, SPENCER P S, SHORE K A. The influence of gain conpression on picose cond optical pulses in semiconductor optical amplifiers [J]. J Modern Opt. 1998, 45: 1211~1218.
- [10] MECOZZI A, MORK I. Saturation induced by picosecond pulses in semiconductor proval amplifiers [J]. J O S A, 1997, B14: 761~ 770.
- [11] CUTERREZ CASTREJON R, SCHARES L, OCCHI L et al. Modeling and Measurement of longitudinal gain dynamics in saturated semiconductor optical amplifiers of different length [J]. IEEE J Q E, 2000. 36: 1476~ 1483.
 - LIU H F, TOHYAMA M, KAMIYA T et al. Pulse broadening in processecond amplification by a 1. 3thm InGaAsP traveling wave amplifier [J]. A P L, 1993, 63: 132~134.
- [13] YU J, JEPPESEN P. Improvement of cascaded semiconductor optical amplifier gates by using holding light injection [J]. IEEE/OSA J Lightwave Technol, 2001, 19: 614~ 623.
- [14] WILLNER A E, SHIEH W. Optimal spectral and power parameters for all-optical wavelength shifting: single stage, fanout, and cascadability
 [J]. IEEE/ OSA J Lightwave Technol, 1995, 13: 771~781.
- [15] JENNEN J, de WAARDT H, ACKET G. Modeling and performance analysis of WDM transmission links employing semiconductor optical amplifiers [J]. IEEE/OSA J Lightwave Technol, 2001, 19: 1116~ 1123.
- [16] WU Zh M, XIA G Q. Effect of carrier recombination on pulse train propagation in semiconductor light amplifiers [J]. Optik, 2003, 114: 276~ 278.