文章编号: 1001-3806(2004) 04 0434-04

短脉冲 XeCI 激光动力学模型及辉光抽运设计

任 韧^{1,2},陈长乐²,朱世华³,徐 进⁴,金克新²,王永仓²,袁 孝²,宋宙模²

(1. 西安交通大学物理系,西安710049; 2. 西北工业大学应用物理系,西安710072; 3. 西安交通大学信息与通信系,西安710049; 4. 西安交通大学生物医学工程所,西安710049)

摘要:以薄膜沉积、外延生长及后续的光刻、激光与物质的相互作用、等离子体研究为目的,研究了 XeCl 动力 学模型及辉光实现。采用辉光脉冲放电方法,实现了激光输出,根据动力学方程、XeCl激光四能级模型,计算了 Xe-Cl反应速率及密度。结果表明,辉光放电稳定,激光脉宽短,功率高,辉光放电体积大,激光脉宽 18ns,单脉冲能量 450mJ,矩形光斑 2cm×1cm,束散角 3mrad。动力学分析和系统模型成立,激光对靶材溅射获得了等离子羽辉。

Dynamic model of a new XeCl laser with short duration time and UV grow discharge system design

REN Ren^{1,2}, CHEN Chang-le², ZH U Shi-hua³, XU Jin⁴, JN Ke-xin², WANG Yong-cang², YUAN Xiao², SONG Zhou-mo²

(1. Department of Physics, Xi' an Jiaotong University, Xi' an 710049, China; 2. Department of Applied Physics, Northwes-tem Polytechnical University, Xi' an 710072, China; 3. Department of Information & Communication, Xi' an Jiaotong University, Xi' an 710049, China; 4. Institute of Biomedical Engineering, Xi' an Jiaotong University, Xi' an 710049, China)

Abstract: A new high power, short duration time XeCl laser is realized in order to prepare microstructure of quantum effect, depositing film, molecular beam epitaxy and analysis of output pulse profiles. It adopts the method of glow discharged, the calculation of dynamic equation, the analysis velocity reaction and density of XeCl laser, and UV preionization. In the addition, the parameters of the laser are also measured. The results are wavelength 308 nm, the pulse duration time 18ns, the pulse energy 450 mJ and the beam divergence angle 3mrad. It is shown that the proposed glow discharged is realized, the dynamic equation model of laser is correct, and the laser has high efficiency to produce the vapor plasma plume. It can be applied in the interaction between laser and material, material plasma study.

Key words: XeCl excimer taser; nanosecond discharge; pulsed laser deposition technique; glow

引 言

XeCl 激基激光器是以激发态的分子跃迁产生 的, 它在激发态暂时成为不稳定分子而在基态又分 解为原子或原子缔合物, 其存在时间极短, 为 10⁻⁸s 量级, 跃迁的两个能级是低激发态到排斥基态(弱束 缚态)。短脉冲 XeCl 激光动力学模型和辉光放电抽 运设计是实现 XeCl 激光的重要步骤, 对激光效率意

基金项目:国家自然科学基金资助项目(60171043);陕 西省自然科学基金资助项目(2001C21)

作者简介:任 韧(1966),男,博士研究生,现主要从事 大功率激光,光电子器件及半导体材料研究。

E-mail: renren@mail. xjtu. edu. cn

收稿日期: 2003-08-27; 收到修改稿日期: 2004-02-04

义重大,研究激基激光反应的动力学方程及模型可 以优化气体的配比,实现优良的激光特性。

目前,脉冲激光沉积制备高温超导材料薄膜、金 刚石薄膜和高温材料薄膜,光电子领域制备非晶金 刚石薄膜纳米颗粒等。尤其是高功率窄脉宽的紫外 激基激光应用引人注目,XeCl激光波长短,效率高, 脉冲短对光电材料可以形成良好的消融剥蚀效应, 品质良好的准分子激光可实现外延生长、纳米及介 观异质结构、微观量子阱、纳米结构器件和效应^[1]。

1 激光器的辉光放电及动力学模型

1.1 激光器的辉光抽运设计及实验

XeCl 准分子激光器通过辉光放电抽运气体, XeCl 从基态跃迁到排斥的激发态,受激辐射产生紫 外 308nm 激光。辉光放电系统包括主电极、紫外预 电离阵列、峰化电容阵列、光学谐振系统。首先紫外 预电离产生初始电子, 然后预电离通路对峰化电容 阵列充电, 最后主电极雪崩效应形成 90cm × 2cm × 1cm 辉光放电带, 放电电压的脉冲函数上升前沿经 多次陡化处理, 达 ns 级, 放电耦合能量, ns 时间抽运 XeCl 激基分子。

图1为作者研制的 XeCl 激光器, 气体介质为 HCl, Xe, He, 采用脉冲放电激励, 紫外预电离 8kV~ 30kV 尖端火花放电, 峰化电容充电, 一方面放电形 成的细丝成为充电通道, 另一方面放电细丝紫外激 励气体介质产生大量的慢速电子。腔体结构包括主 电极、紫外预电离针阵列、左右支板和峰化电容组几 部分, 腔体由环氧玻璃钢组成, 宽紫铜带多路连接外 部储能电路和主电极及紫外预电离电路, 主电极固 定在上下支板中央位置, 两侧均匀分布紫外预电离 针阵列, 峰化电容组与预电离针相接。光学谐振系 统含反射镜、输出石英半透半反镜, 按临界腔设计。 为避免 HCl 气体强腐蚀性, 腔体采用玻璃钢腔体环 氧树脂材料组成, 壁厚 25mm, 外腔直径 270mm, 腔长 110cm。

Fig. 1 The structure of array of pre-ionization and glow discharge

辉光放电要求电场分布均匀, 等电势面相互平 行, 可获得良好的抽运均匀性。这一方面要从电极 设计入手, 设计方法有 Brue 经验近似方法和罗柯夫 斯基解析曲线方法, 即采用保角变换, 将电场转换为 有限体积, 边缘电场小于辉光区电场, 放电空间形成 系列的等位面的强均匀电场。另一方面要增加电子、 等离体数密度均匀分布的面积, 实现多电子的雪崩效 应, 应用的方法是紫外预电离同步实现辉光放电。

辉光放电设计的预电离针阵列,紫外预电离产 生初始电子。试验设计两级 marx 放大器,容量 $0.22\mu F \times 22$,主电极在储能 *C*s 充电并保持高压 $25kV \sim 35kV$ 时,预电离针针间间隙产生紫外光,电 离气体,紫外预电离的电子引起主电极间高压辉光 放电。XeCl^{*}吸收紫外波段的抽运光,产生 308nm 的激光。辉光放电设计中预电离一方面提供了一定 强度的工作物质可吸收的紫外抽运光,另一方面使 工作气体进行光电离,同时引起主电极表面的光电 发射。紫外预电离二次电子,在电极间形成一定密 度初始电子,降低气体的击穿电压,电极均匀辉光放 电。

按图 1 中电极形状, 辉光放电方程由电子离子 的连续方程、瞬态泊松方程、麦克斯韦方程和电子离 子方程决定, 设 $\frac{\partial u}{\partial Z} \gg \frac{\partial u}{\partial X}, \frac{\partial u}{\partial Y} \gg \frac{\partial u}{\partial X}, u$ 是正对的正负 电极微元间的电位差, *X*, *Y* 为微元截面坐标, *Z* 为 正负电极间坐标, 求放电的电子数密度分布:

$$\frac{\partial n}{\partial t} = D_Y \frac{\partial^2 n}{\partial Y^2} + D_Z \frac{\partial^2 n}{\partial Z^2} + \eta f N_0 + \left(v_{E_Z} \frac{\partial n}{\partial Z} + v n \frac{\partial E_Z}{\partial Z} \right) + \left(v_{E_Y} \frac{\partial n}{\partial Y} + v n \frac{\partial E_Y}{\partial Y} \right)$$
(1)
$$\frac{\partial N}{\partial t} = D_Y \frac{\partial^2 N}{\partial Y^2} + D_Z' \frac{\partial^2 N}{\partial Z^2} + \eta f N_0 + \left(v'_{E_Y} \frac{\partial N}{\partial Y} + v' n \frac{\partial E_Y}{\partial Y} \right)$$
(2)

式中, D_X , D_Z 为电子的沿 Y, Z 扩散率常数, $D_{Y'}$, D_Z' 是正粒子在 Y, Z 方向扩散率常数, n 是电子数 密度, N 是正粒子数密度, N_0 是初始粒子数密度, E_Z , E_Y 为Z, Y 方向的电场强度, v 为电子的迁移 率, v' 为正粒子的迁移率, v_{E_Z} 为电子沿 Z 方向的迁 移速度, v'_{E_Z} 为正粒子沿Z 方向的迁移速度, 同样, v_{E_Y} , v'_{E_Y} 是沿 Y 方向的电子速度和粒子速度, f 是气 体速率电离系数。对模型曲面取的小微元, 用柱坐 标表示, (1)式和(2)式得以简化, 分离变量法, 设 n(r, Z, t) = P(r)S(Z)T(t), $令 fN_0 = a + b + c + d$, 代入, 解得电子数密度 n 为:

 $n = G J_0 \left(\int_{D_r}^{b} r \right) e^{at} \left(\cos \int_{D_Z}^{c} Z + \sin \int_{D_Z}^{c} Z \right)$ (3) 式中, D_r , D_Z 和 G 常数可求出, D_Z , D_r 分别为所取 圆形微元Z 坐标和半径r 方向的扩散率常数, Jo 为 零阶贝塞尔函数, a 为常数, t 为暂态到稳态的过渡 时间。电子数密度与电极间隙关系、实验用氮气的 电子数密度分布见图 2, 靠近阴极的电子数密度较 大, 在氮气放电实验中, 阳极表面辉光放电较强, 在 高气压、大密度下电子数密度峰值逐渐靠近电极中 央。试验结果与上述电子数密度结论一致, 在阴极 端辉光放电较强。

实现辉光放电的方法有预电离系统调整,用

Fig. 2 The relation of spatial distributions of electron density n and distance of main electrode

337nm 氮分子激光验证激光系统, 降低气体电离电 位及大体积辉光放电通道获得等。为避免HCl腐蚀 性,实验中先充入体积分数为 99.999% 的氮气,对 预电离系统辉光放电调试 根据放电细丝和预电离 效果,调整预电离针距离,对辉光放电不均匀处,改 变主电极距离,采用塞规测量电极间隙,严格等间距 误差小于 0.01mm, 对弧光放电, 毛刺, 尖端放电抛 光,避免弧光放电产生。337nm 氮分子激光验证,调 整石英输出耦合镜、反射镜、腔长,系统联调工作下, 氦气辉光放电,产生 337nm 激光,验证可行性,避免 使用 HCl 气体的强腐蚀。加入电离位较低的工作气 体.N2 气电离电位降低.紫外预电离产生二次电子. 放电电离,光电离等多种途径获得辉光。高压辉光 放电通道为横向辉光放电激发过程,放电电极长度 长,放电通道宽,电极间隙要求平行且严格等间距, 表面光滑,获得大电流下的均匀电场。这个过程电 流大,易产生弧光放电,弧光放电消耗能量、降低转 换效率和输出能量。因此,要提高效率就必须预电 离,辉光到来前,弧光放电被阻止之

1.2 激光器的动力学方程及模型

XeCl 激光的动力学方程由激光抽运、激光脉冲 和弛豫振荡建立完成,体现在反应动力学方程中,系 统反应动力学模型是四能级系统模型,两个振动转 动能级 J₁, J₂,相应的振动能级为 Y₁, Y₂,是一个瞬态 过程,可以从动力学方程、速率方程分析其密度变 化。通过半经典的量子力学理论以及宏观光场建立 的电磁理论分析,建立粒子数密度方程和光子数密 度方程,得到 XeCl^{*} 准分子的密度。

气体反应动力学有 3 个主要过程。首先紫外预 电离产生大量的低速电子与 Xe 形成激发态 Xe^{*} 原 子, Xe⁺ 离子以及二次激发的 Xe^{**} 原子: Xe+ e^{\rightarrow} Xe^{*} + e; 其次 HCl 受激发, 振动, 电离, 分解为 CΓ, H⁺: HCl+ e^{\rightarrow} H+ Cl⁻ 和 HCl+ e^{\rightarrow} H⁻ + Cl, 式中, e^{-} 表快速电子, e 表慢速电子。最后三体复合, XeCl^{*} 激基分子产生, 其中 *M* 为缓冲气体, 可以采用 He/ Net Ar,缓冲气体在反应中,一起到了媒介子的作用, 二降低了气体的温度,阻止了电子的进一步升温和 运动速率提高:

 Xe^* + H⁺ + CΓ + $M \xrightarrow{\rightarrow} XeCl^*$ + H + M (4) 此过程中激基的 $XeCl^*$ 分子受主电极辉光放电的抽 运成为激发态的分子, 排斥的激发态到排斥基态辐 射跃迁, 放出 308nm 的紫外光子^[2, 3]。

反应动力学设计必须结合激光器辉光放电、紫 外预电离、脉冲前沿压缩、两极 marx 发生器等设计 进行。XeCl^{*}动力学方程为:

$$\operatorname{Xe}^{*} + \operatorname{Xe} \xrightarrow{K_{1}} \operatorname{Xe2}^{*} + e$$
 (5)

$$\operatorname{Xe}^{*} + \operatorname{HCl} \xrightarrow{\kappa_{2}} \operatorname{XeCl}^{*} + \operatorname{H}$$
 (6)

$$Xe^* + HCl + M \xrightarrow{\alpha_3} Xe^* Cl + H + M$$
(7)

$$Xe^{+} + HCl \xrightarrow{++} XeCl^{*} + H^{+}$$
(8)
$$K_{\eta}$$

$$XeCl \rightarrow HCl \xrightarrow{a} XeCl + Cl + H \qquad (9)$$

式中, Xe^{*} 为亚稳态受激准分子, Xe⁺ 为 Xe 离子, K_1, K_2, K_3, K_4 分别是各反应过程的速率常数, K_{21} 表示受激辐射从激发态向排斥的基态的跃迁, M 为 缓冲气体 He 或 Ne 气。

h 由速率方程(5) 式~ (9) 式, 可得 XeCl^{*} 准分子 的密度为:

$$N_{\rm XeCl}^{*} \approx \frac{(K_2N_{\rm HCl} + K_3N_{\rm HCl}^{2}) \, \sigma_{\rm Xe^{+}} \, n_{\rm e}v_{\rm e}f(t) N_{\rm Xe}}{K_1N_{\rm Xe} + \sigma_{\rm Xe^{+}} \, n_{\rm e}v_{\rm e}f(t) + K_2N_{\rm HCl}^{2} + K_3N_{\rm HCl}} + \sigma_{\rm Xe^{+}} \, n_{\rm e}v_{\rm e}f(t)$$
(10)

式中, N 为分子数密度, N_{HCl} , N_{Xe} 是相应气体分子数 密度, n_e 和 v_e 是电子数密度和速率, K_1 , K_2 , K_3 是 (5)式~(9)式各反应过程速率常数, f(t)为脉冲放 电激励函数, σ_{Xe^+} 是 Xe⁺离子的激发截面积。动力 学反应设计中考虑了 XeCl^{*} 准分子的增益系数, 饱 和强度, 感应辐射截面积^[4]。

2 实验分析

2.1 激光器的辉光放电、紫外预电离分析

辉光放电紫外预电离技术,获得了均匀大面积 大体积的辉光放电,电极间均匀放电,实现等电位分 布,预电离装置是通过预电离针高压击穿介质气体, 产生放电火花发出紫外辐射,在紫外光的照射下,电 离电位降低,辉光放电抽运介质气体。辉光放电,单 电子向主电极正极运动,对气体产生碰撞电离,呈锥 体形,由于热效应,电子沿电极方向扩展,在大量电 子运动下,雪崩形成等离子带,导致主电极间介质击 穿,整体辉光放电。其中提高火花塞放电电压和气体的压强,减小电路的电感、阻抗,可实现高功率,短脉冲高压陡脉冲前沿 ns 辉光放电。压缩脉冲的上升时间越短,抽运功率越高,放电能量将尽可能多地转换为光能量。

同时辉光放电中 M 缓冲气体 He 或 Ne 的作用, 将能量共振转移激发, M 为 He, Ne, Ar 气, 处于激发 态的原子(分子) 以及亚稳态的原子, 与较低能态的 原子碰撞, 失去激发态能量, He, Ne 获得能量并转移 给 XeCl^[3]。

整体辉光放电的获得,紫外预电离是前提,紫外 预电离对辉光放电从初始单电子对气体雪崩效应, 多电子形成等离子体,主电极高压下产生整体辉光。 预电离产生的大量电子主要有 3 方面: 高压电子碰 撞 $Cl^- + e^{\rightarrow} Cl + 2e$,光子剥离 $Cl^- + hv^{\rightarrow} Cl + e$,气 体缓释 $Cl + M^{\rightarrow} Cl + M + e$ 。式中, v为辐射光波频 率, h 为普朗克常数。

总之,紫外预电离过程释放出大量的电子,获得 大面积辉光放电。为了提高紫外预电离的电离效 率,获得均匀的电离效果,试验中低电离位的化合物 加入,在紫外光的电离下,容易迅速产生单光子及多 光子,而多光子又电离气体产生电子。

试验中加入工作介质的化合物应不影响工作气体性能,即对激发态的原子离子猝灭系数应很小, XeCl^{*} 准分子大部分原子分子对其的猝灭系数很大,因此,对激光选择的化合物有严格的限制。实验选用在紫外照射下,有大的电离截面,低的电离电位,对产生的激光吸收小,选用 CF4 等,可以提高激光的出光能量。

系统气体管路要求高真空,激光器充入 3 种气体前,真空泵对谐振腔抽真空 10^{-4} Pa,防止杂质气体掺入,氧气的亲和势为 2.4× 10^{-19} J,体积分数为 0.1% 空气的掺入,介质气体放电将呈紫红色,负离子增加,放电由辉光向弧光转变。

2.2 激光器的动力学方程及模型实现分析

激光气体反应动力学模型要求谐振腔的气体按 比例充气, HCl 气体和 Xe 气是产生激基 XeCl^{*} 分子 的种子气体, He 气, Ne 气为缓释气体, 促使放电形 成激发态的准分子和离子, 及其亚稳态通道。

速率方程(10)式的 XeCl^{*} 准分子密度中,脉冲 放电激励上升时间小于激基 XeCl^{*} 分子寿命时间 时, N xeCl^{*} 密度较高,并与上升脉冲时间和放电脉冲 持续时间呈正比,电流的放电曲线与电压上升脉冲 时间产生的功率最大。激励上升沿时间大于激基 XeCl^{*} 分子寿命时间, 电压曲线平缓, 上升脉冲时间 内得到的功率小, *N*XeCl^{*} 密度较低, 只与脉冲上升时 间呈正比例。

反应过程中需要分析大量电子的产生。大量电子的产生不但可以形成充放电的通路,使整体电路成为低电感、小阻抗的快速电路,而且大量均匀的电子,利于主电极间均匀大面积、稳定辉光放电产生,慢速电子的产生有电子碰撞、光子剥离、气体缓释三途径。系统采用的空间预电离火花放电阵列,作为紫外光源,电极高压放电产生基于空间场强对电针上电子的雪崩作用,高压造成的正负粒子向两侧电针的快速渡越,带来对气体介质的放电。HCI 是慢速电子的来源之一,此过程电子与气体介质作用,导致气体电离、离化,气体的粒子转动能级及振动能级升高,气体被电离成离子,放出慢速电子,形成 CIT离子,预电离的大量电子的来源是 CIT离子与高压电子碰撞,光子与 CIT离子作用,以及 CIT离子与惰性气体 He 作用产生的^[4,5]。

按动力学方程和一定气体配比 V(HCl): V(XetV(He) = 0.15%1.2%98.65%, 辉光放电抽运, 光脉冲波形及脉冲宽度见图 3。

Fig. 3 The measured pulse width curve under 3. $039\times10^5 \text{Pa},\,35 k\,\text{V}$ DC

气压变化对脉冲宽度的影响为压强增大,单脉 冲的宽度随压强而变短,见图 4。

Fig. 4 Variation of the duration time of laser pulse with the gas mixtures pressure

表 1 为 30kV 时,脉冲宽度随气压的增大而变短的参数对照表。

437

(下转第448页)

致密、无缺陷,形成细板条状马氏体,这是因为焊区 组织在激光焊热循环作用下经重结晶形成之故。

3.3 显微硬度分析

图 7 中为熔区的显微硬度分布曲线,从图中可 以看到,基体的硬度在 200HV 左右,熔区的硬度有 显著的提高,达到 450HV 左右,这是由于激光焊接 中在 800℃~ 500℃区域的冷却时间很短,形成硬度 较高的马氏体组织,但这也在某种程度上降低了焊 缝区的韧性,通过回火处理可改善焊缝区的韧性。

Fig. 7 The micro-hard distribution of welding zone

3.4 力学性能测试

此外,焊接好的双联齿轮在长春汽车齿轮厂进 行扭矩实验和热变形测量,结果发现,热影响区造成 的变形在允许的 0.05mm 范围内,进行扭矩试验时, 在 15kNm 的作用下未发现开裂和变形超差现象,焊 接产品符合生产要求。

4 结束语

通过焊接工艺参数的分析和焊接结果的检验发现, 变速箱双联齿轮可以用激光焊接工艺替代电子 束焊或纤焊; 激光功率、焊接速度、离焦量以及等离 子体等工艺参数都对焊接质量有着显著的影响, 合 理选择工艺参数是焊接的关键之一; 在本实验中, 激 光功率为 3kW、焊接速度为 1.5m/min、离焦量为 - 0.5mm时, 焊接 20CrMnTi 合金钢双联齿轮能得到 理想的焊接效果: 焊缝饱满、美观; 深宽比大于 2; 热 影响区小, 熔区很快过渡到基体, 熔区组织致密、无 缺陷且显微硬度有显著的提高; 焊接热变形小, 具有 较高的力学性能。总之, 激光焊接变速箱双联齿轮, 各项指标均能达到实际要求。

- [1] 王建中,马 麟,变递箱齿轮总成激光焊接工艺研究[J]. 热加 工工艺, 2002(6):62-63.
- [2] 唐霞辉,朱海红,朱国富 a d. 厚钢板激光焊接技术 [J].焊接 技术、1996(4): 32~34.
- [3] 王家金. 激光加工技术 [M]. 北京: 计量出版社, 1992. 403~404.
- [4] ※学小平,汤漾平,冯清秀.汽车变速箱齿轮与齿圈激光焊接工艺 研究 [J].汽车技术,2000(4):22~24.
 - 唐霞辉. 高功率 CO₂ 激光焊接光致等离子体控制研究 [D]. 武 汉: 华中科技大学, 2000. 34~ 36.

(上接第437页) relation of pressure and the pluse duration time Table 0.517 1.013 1.530 2.016 2.533 3.029 3.546 4.062 pressure of power/105Pa 33. 89 20.70 19.79 19.50 width of pulse/ns 30.17 26.83 24.26 22.13

3 结 论

XeCl 准分子激光器实验完成了激光气体反应 动力学方程及模型的建立,按速率方程调整气体配 比,紫外预电离自动与辉光放电同步,实现抽运体积 2cm×1cm×90cm,辉光放电均匀。激光脉冲产生机 理表明激光结构正确,动力学方程、速率分析符合指 标要求,采用脉冲放电抽运方式工作,激光脉宽 15.42ns,重复频率 0.5Hz~5Hz 可调,单脉冲能量 450mJ,束散角 3mrad,矩形光斑大小 2cm×1cm。

参考文献

- MARTINO M, LUCHES A, FERNANDEZ M. Characterization of thin indium tin oxide films deposited by pulsed XeCl laser ablation [J]. Appl Phys, 2001, 34 (17): 2606~2609.
- [2] SKAKUN V S, LOMAEV M I, TARASENKO V F. KrCl and XeCl exciplex glow discharge lamps with an output power of similar to 1. 5kW [J]. Tech Phys Lett, 2002, 28(11):899~ 801.
- [3] BERRY G A. On the long pulse operation of an X-ray preionzed gas discharge pumped ArF excimer laser [J]. A P L, 1999, 75: 23~ 24.
- [4] IFO S. Continuous operation up to 3kHz in a discharge-pumped XeCl excimer laser [J]. Appl Phys, 1996, 63(1): 1~ 7.