文章编号: 1001 3806(2003) 04 0279 03

LD 泵浦 Nd^{3+} : YVO₄ 1342nm 激光器实验研究^{*}

扈 燕

王 英 刘吉清

(华中科技大学激光技术与工程研究院,武汉,430074)

(华中科技大学光电系,武汉,430074)

摘要:介绍了 LD 泵浦 Nd³⁺:YV O₄ 1342nm 激光器得到 296mW 的激光输出,最大斜率效率达到 21.2%。同时给出了 1342nm 激光的光谱曲线及其输入 输出功率特性曲线。

关键词: Nd³⁺: YVO₄; LD 泵浦; 二极管泵浦; 1342nm 激光 中图分类号: TN248.1 文献标识码: A

Laser diode end pumped Nd³⁺: YVO₄ lasers at 1342nm

Hu Yan¹, Wang Ying², Liu Jiqing²

(¹ Institute of Laser Technology and Engineering, HUST, Wuhan, 430074)

(² Department of Optoelectronic Engineering, HUST, Wuhan, 430074)

Abstract: A LD pumped Nd^{3+} : YVO₄ laser emitting at 1342nm is introduced. The laser output power about 296mW was obtained, the maximum slope efficiency is up to 21. 2%. The spectrum curve at 1342nm and the input-output power curve are given.

Key words: Nd³⁺: YVO₄; LD pumped; laser dio de pump; 1342nm laser

引 言

1. 3^µm 区域激光由于正好处于硅光纤的传输 窗口内, 非常适合于光纤通讯中的应用, 可用于制造 光通讯中的光发送机、放大器等, 同时, 作为中红外 参量激光器的泵浦源将更为有效, 此外, 经过倍频的 红色激光取代氪离子激光也将有相当的市场, 还可 用于光电子、激光微加工、激光医疗、光数据存储等 诸多领域, 因此, LD 泵浦的 Nd³⁺:YVO4 晶体 1342 nm 激光器的用途十分广泛。

 Nd^{3+} : YVO₄ 是当前现有的二极管泵浦的固体 激光器效率最高的晶体之一。与 Nd^{3+} : YAG 和 Nd^{3+} : YLF 相比, Nd^{3+} : YVO₄ 对二极管激光器的 泵浦波长和温度控制的要求更低, 受激发射截面大, 在泵浦波长上吸收系数高, 吸收带宽, 斜率效率高, 激光域值低, 线偏振激发, 能单模输出。此外, Nd^{3+} : YVO₄晶体的一个吸收峰正好位于二极管激 光器的中心波长, 因此, Nd^{3+} : YVO₄ 很适合用于高

收稿日期: 2002-09-25; 收到修改稿日期: 2002-10-22

© 1994-2010 China Academic Journal Electronic Publi

功率、高稳定性、高性价比的二极管泵 浦固体激光 器。在集成设计和单纵模输出中, Nd³⁺: YVO₄ 比 其它的普通晶体表现出它特有的优点。二极管激光 器泵浦 Nd³⁺: YVO₄ 集成激光器及其倍频绿、红或 蓝光激光器将成为加工、材料处理、光谱学、微片光 刻、光学成像、医疗诊断、激光打印和其它更广泛应 用的理想激光工具。但是, 与 Nd³⁺: YAG 相比, Nd³⁺: YVO₄ 的热效应现象更为严重, 影响了激光 效率、腔的稳定性和输出光束质量等。而且, 掺杂浓 度越高, 热效应现象越明显。

国内对 Nd³⁺: YVO4 晶体 1342nm 波段的研究 不多,主要有山东大学晶体材料研究所王长青^[1]等 获得最大激光输出 157mW, 光光转换效率 30.5% 和中国科学院张恒利^[2]等最大获得 3W 激光输出, 斜率效率 43.7%的报道,此外,张恒利等还对 1342nm 激光进行 II 临界相位匹配 KTP 晶体腔内 倍频获得 273mW 671nm 红光输出。

1 激光器及其结构

1.1 关于 Nd³⁺: YVO₄ 晶体

3 价钕离子在 Nd³⁺: YVO₄ 晶体中作为激活粒 子, YVO₄ 作基质, 其能级图^[3] 如图 1 所示。处于基 态⁴ I_{9/2}的钕离子吸收光泵发射的相应波长的光子能

^{*} 国家八六三计划支持项目。

作者简介: 扈 燕, 女, 1977 年 7 月出生。硕士研究 生。现从事喇曼放大器泵浦激光器及其耦合系统的研究。

量后跃迁到⁴F_{3/2}, ²H_{9/2}和⁴F_{7/2}, ⁴S_{3/2}能级(吸收带的 中心波长是 809nm 和 600nm), 然后几乎全部通过 无辐射跃迁迅速降落到⁴F_{3/2}能级。⁴F_{3/2}是亚稳态能 级。处于⁴F_{3/2}能级的 Nd³⁺ 离子可以向多个终端能 级跃迁并产生辐射, 其中几率最大的是⁴F_{3/2}至⁴I_{11/2} 的跃迁(波长为 1064nm), 其次是⁴F_{3/2}至⁴I_{13/2}的跃 迁(波长 1342nm), ⁴F_{3/2}至⁴I_{9/2}的跃迁几率最小(波 长 914nm)。⁴F_{3/2} \rightarrow ⁴I_{13/2}跃迁虽然也属于 4 能级系 统, 但跃迁几率小, 只在抑制 1064nm 激光的情况 下, 才能产生 1342nm 的激光。⁴F_{3/2} \rightarrow ⁴I_{9/2}跃迁属 3 能级系统, 室温下难以产生激光。

Nd³⁺:YVO4 晶体具有较宽的吸收带宽,较大 的受激发射截面,Nd³⁺离子除了 1.064^µm 的受激 辐射跃迁外,还可产生 1.3^µm 波段的弱辐射(例如: Nd³⁺:YVO4 为 1.342^µm,Nd³⁺:YAG 为 1.320^µm)。Nd³⁺离子在YVO4 中比在YAG 中掺 杂的浓度高,其在 1.342^µm 处的发射截面仍然较大 (约为 6×10⁻¹⁹ cm²),与 1.064^µm 的分支比(为 0.24)高于YAG(为 0.18),并且偏振发射,特别适 于用 LD 泵浦,如图 2 所示为掺杂 0.5% 的 Nd³⁺: YVO4 晶体的吸收谱线,纵坐标 T%表示晶体的透 过率,透过得越少,则表示吸收得越多。由图可知, 晶体在 808nm 附近有一吸收峰,这正是 LD 的中心 波长。图 3 是晶体 800nm~ 1600nm 的归一化荧光 谱线, Nd³⁺:YVO4 晶体对泵浦光偏振敏感,泵浦光 为 *s* 偏振比*p* 偏振时增益高。

Fig. 3 Normalized fluorescence spectra from 800nm to 1600nm of $\rm Nd^{3+}$: YVO $_4$

激光二极管端面泵浦固体激光器的阈值为^[4]: $P_{\text{th}} = \frac{\pi h c (\omega_{\text{c}}^{2} + \omega_{\text{p}}^{2}) \cdot \delta}{4 \sigma \tau \lambda_{\text{p}} \eta_{\text{p}}}$ (1)

式中, h 为普朗克常量, c 为光速, λ_p 为泵浦光波长, ω_c , ω_p 分别为腔模和泵浦光斑束腰, δ 为腔的损耗 (输出镜的透过率 T), σ 为净增益截面, τ 为晶体上 能级寿命, η_p 为量子效率。忽略腔模和上能级寿命 的差别, 则 1. 06µm 谱线和 1. 34µm 谱线的阈值之 比为: $P_{1.34}/P_{1.06} = \sigma_{1.06} \delta_{1.34}/\sigma_{1.34} \delta_{1.06}$ (2) 计算中取 $\sigma_{1.06}/\sigma_{1.34} = 0.24$, $\delta_{1.34}/\delta_{1.06} = 18$, 则可 估算出其阈值之比为约 4. 32。

1.2 晶体热透镜效应

对连续端面泵浦、激光振荡束腰远小于晶体尺 寸的的情况下,可将方块晶体等效为圆柱状。由于 激光晶体侧面用硅胶皮包裹夹在紫铜夹具中间,用 半导体温控装置加风扇对晶体进行制冷,可看作侧 面导热且表面温度稳定。在这些近似下及忽略热应 力和形变时,可由稳态热传导方程解出激光晶体的 温度分布,进而可求出近似的等效热透镜焦距^[5]:

$$f = \frac{\pi K_{\rm c} \omega_{\rm p}^2}{P_{\rm th} (\,\mathrm{d}n/\mathrm{d}T)} \left[\frac{1}{1 - \exp(-\,\alpha l)} \right] \qquad (3)$$

式中, α 为吸收系数, l = 5mm 为晶体通光长度, P_{th} 为转化为热的泵浦功率, ω_p 为泵浦光斑尺寸, $K_c = 5.2W/(m^{\bullet} K)$ 为晶体热导率, $dn/dT = 4.7 \times 10^{-6} K^{-1}$ 为晶体折射率的温度变化系数。图 4 中给出了 在取 $P_{th} = 1W$ 的情况下, 晶体热焦距与泵浦光斑尺 寸关系的理论曲线。

2で1994-2可怜でhina Academic Journal Effectionic Publishing House. All rights reserved. http://www.cnki.net

Fig. 4 Thermal focal length(f) vs pump beam waist(ω_p) curve

由于忽略热效应和晶体形变的影响,及实验中 晶体的散热情况不理想,实际的热焦距比上式求得 的要小,也即热致屈光度(D = 1/f, 单位为 1/mm)要大。从上式中可以看出, 泵浦光斑尺寸对晶体热 焦距的影响是很大的,在其它参数确定的情况下,呈 2次曲线关系,所以,适当加大泵浦光斑尺寸可以有 效地减小热透镜效应的影响。但是,由于 Pth并不 是一个完全确定的量,随着泵浦功率的增加, $P_{\rm th}$ 也 随之增加,这样,f与 ω_p 并非完全的2次关系。

1.3 激光器结构

实验装置如图 5 所示。激光器采用 LD 端面泵 浦。泵浦源 LD 带尾纤输出, 可通过调节其控制电 流改变其输出功率,最大输出功率约为 20W。LD 内部配有温度控制系统,可将其温度波动控制在 1℃的范围内。由于光纤输出的泵浦光光束发散角 很大,因此尾纤输出的泵浦光经过两个凸透镜,对其 进行整形聚焦。调整泵浦光聚焦到晶体中的光斑大 小及位置,使晶体因热效应而引起的等效热焦距尽 可能大,可以降低激光器阈值,提高输出功率。

Fig. 5 Structure of the laser

Nd³⁺: YVO4 晶体尺寸为 3mm × 3mm × 5mm, 掺杂 浓度 1%, a 向切割, 其前端面镀有 1342nm 全反和 808nm 增透膜, 后端面镀有 1342nm 增透膜。输出 镜采用曲率半径为 0.5m 的凹透镜,凹面上镀膜,对 率达99%以上。谐振腔长约 50mm。晶体下方采用 半导体温控装置加散热片对晶体进行制冷。

实验结果与讨论 2

2.1 1342nm 激光光谱曲线

图 6 是用准直器将部分光束耦合到光纤里,用 分辨率为 0.06nm 的光谱分析仪(86140B 型, Agilent公司) 对输出激光的光谱进行分析得到的光 谱曲线。可以看到,激光是多纵模输出,其最强纵模 的中心波长为 1342.025nm, 3dB 带宽为 0.144nm。由 于激光器没有采取任何选模措施,因此,其产生多纵 模是正常现象。

2.2 激光器功率特性曲线

图 7 是腔长为 50mm 时激光器的输入-输出功 率曲线。激光器的泵浦阈值功率约为 296mW。在 从阈值上升到 1.2W 的过程中,激光器的输出功率 基本成线形增长,最大斜率效率为21.2%。当输入 功率继续增加,激光器输出功率增长趋缓。开始时,

随着输入功率的增加. 使 Nd³⁺ 的反转粒子数迅速增 加,故激光输出功率也随之增加。随着输入功率的 进一步增加,晶体发热加剧,使各向同性的晶体变成

(下转第292页)

1342 mo的反射率是97.3%。同时对 808 mm的反射 ublishing House. All rights reserved. http://www.cnki.net

5 结 论

新型结构的基于 SOA 的光开关矩阵通过巧妙 的设计解决了常用结构类型中存在的规模局限性问 题。它们克服了树状分支结构中存在的放大的自发 辐射(ASE)噪声的积累等缺点,表现出 SOA 光开关 在高开关速度和净增益等方面的优势。特别是最新 出现的应用有源垂直耦合器的交叉点结构的空间光 开关矩阵,它采用了独特的正交立体分层结构,吸取 了MOEMS 光开关矩阵在矩阵结构(正交矩阵结 构)上的优点。同时,在交叉点处采用新机理(有源 垂直耦合器)作为交换机构,使得开关速度达到纳秒 量级,且集成度最为致密。它还可用于波长转换,使 其功能从空分光交换扩展到波分光交换。在未来的 高速和高度灵活的全光包交换网络中将有着巨大的 应用潜力。它具有其它机制的光开关矩阵不可比拟 的优越性,表现出诱人的应用前景。

目前,在制作大规模的基于 SOA 的光开关矩阵 中存在工艺稳定性、开关单元性能一致性和可靠性 等问题。这是因为大规模的光开关矩阵对工艺过程 要求极高。基于 SOA 的光开关矩阵在制造中要用

(上接第281页)

各向异性,产生了双折射现象,同时,因存在着热梯 度,也产生了热应力,使晶体的折射率发生变化,总 的来说,晶体在热效应的作用下,随着温度的升高, 焦距由远及近地变化,使谐振腔逐步从稳定腔向非 稳腔过渡,激光器的输出功率增长逐渐趋缓。由于 仅仅处于实验阶段,制冷装置只是简单地置于晶体 下方,再通过风扇吹散热片进行散热,晶体的散热情 况并不是很好,还有耦合泵浦光的两个凸透镜参数 没有经过精确计算和调整,镜片上也没有镀膜,耦合 效率很低,若对晶体的散热方式和泵浦耦合方式进 行改进,得到的输出功率、效率都会有大幅度提高。

3 结 论

利用半导体激光器端面泵浦 Nd³⁺: YVO4 晶

到金属有机化学气相沉积(MOCVD)生长技术、精确的光刻和等离子刻蚀等技术。各研究生产机构正加速努力,使它们满足实用化要求。随着基于 SOA 的光开关矩阵的理论和设计水平的不断提高和工艺过程的不断完善,基于 SOA 的光开关矩阵将成为未来全光通信中的关键器件之一,在将来的高速光网络中将扮演重要的角色。

参考文献

- [1] Liu D M , Hu X J, Huang D X. Proc SPIE, 1999, 3899: 159~ 165.
- [2] 刘德明, 胡晓君, 黄德修 et al. 华中理工大学学报, 1999, 27(10): 4~6.
- [3] 张新亮,任雪斌,黄德修 et al. 半导体技术, 1997(6): 17~19.
- [4] Kato T, Sasaki J, Shimoda T *et al*. IEICE Trans on Electronics, 1999, E82C(2): 305~ 312.
- [5] Fan R S, Hooker R B. Journal of Lightwave Technology, 2000, 18
 (4): 546~ 554.
- [6] Kirihara T, Ogawa M, Inoue H et al. IEEE Photon Technol Lett, 1994, 6(2): 218~ 221.
- [7] Fish G A, Coldren L A, DenBaars S P. IEEE Photon Technol Lett, 1998, 10(2): 230~ 232.
- [8] Yu S Y, Owen M, Varrazza R et al. Proceedings of APCC/ OECC' 99, 1999(2): 1623~ 1626.
- [9] Yu S Y, Owen M, Varrazza R et al. Conference on Lasers and Electro Optics, 2000: 256~ 257.

体,通过对晶体端面和输出镜的镀膜,抑制了增益更强的 1064nm 谱线的起振,产生了 1342nm 激光,最大输出功率达到 296mW,最大斜率效率 21.2%。

参考文献

- [1] 王长青, 沈德元, 卢建仁 et al. 光学学报, 1997, 17(9): 1176~ 1179.
- [2] 张恒利,杨乾锁,竺乃宜 et al.量子电子学报,2000,17(5):400 ~ 404.
- [3] 周炳琨, 高以智, 陈倜嵘 et al. 激光原理. 4版, 北京: 国防工业 出版社, 2000: 275~276.
- [4] 张恒利,何京良,侯 玮 et al. 中国激光, 1999, 26(6):481~
 484.
- [5] 张恒利, 竺乃宜, 杨乾锁 et al. 光子学报, 2000, 29(5): 470~
 473.