高功率连续波 \mathbf{CO}_2 激光辐照加载铝板的研究 *

郑启光 辜建辉 陶星之 王 涛 汪洪海

(华中理工大学激光技术国家重点实验室,武汉,430074)

李思忠 刘绪发 孙承伟

(西南流体物理研究所,成都,610003)

摘要: 对受拉、受压和扭曲加载的 LY 12 铝合金板被连续 CO2 激光辐照后的热力机械响应、应 力状态、变形及破坏等进行了研究,同时研究了各种不同加载形式下的激光辐照破坏的工艺参数 范围,分析了激光辐照破坏区的微观结构。研究表明,在激光辐照和机械加载的联合作用下,激光 辐照烧斑区产生部分熔化和凹陷,在辐照区的边缘产生裂纹和皱折,最终导致破坏。另外,还具体 分析了几种试件的破坏特征。

关键词: CO2 激光 破坏效应 LY12 铝合金

Pre-loaded LY12 aluminum alloy irradiated by high-power laser beam

Zheng Qiguang, Gu Jianhui, Tao Xingzhi, Wang Tao, Wang Honghai (National Lab. of Laser Technology, HUST, Wuhan, 430074) Li Sizhong, Liu Xufa, Sun Chengwei

(Southwest Institution of Fluid Physics, Chengdu, 610003)

Abstract: Thermal and mechanical response, stress statute, deformation and damage of pre-pulled, pre-pressed and pre-twisted LY12 aluminum alloy specimens caused by irradiation of high-power CW CO₂ laser beam were studied in this paper. The parameters of laser irradiation and the microstructure of laser irradiated area were analyzed for different types of pre-loading and different shapes of specimens.

* 中国工程物理研究院基金资助。

診 考 文 献

- 1 Hasegawa A, Tappet F. A P L, 1973; 23(1): 171
- 2 Mollenauer L F, Stolen R H, Gordon J P. Phys Rev Lett, 1980; 45(13): 1095
- 3 Belanger P A, Mathieu P. Appl Opt, 1987; 26(1):111
- 4 Jerominek H, Delise C, Tremblay R. Appl Opt, 1986; $25(\,5):732$
- 5 Swartzlander G A, Andersen Jr D R, Regan J J et al. Phys Rev Lett, 1991; 66(12): 1583
- 6 陈险峰,陈英礼,李劬.光学学报,1996;16(7):952

作者简介: 陆 宏, 男, 1967 年 3 月出生。理学博士, 副教授。现在哈尔滨工业大学应用物理系任教, 科研方向为非线性 光孤子、光电对抗等。 Under the combined laser beam irradiation and mechnical pre-loading, the laser beam irradiated area on the specimen was melt and depressed, causing fracture on the border area, and finally being damaged.

Key words: CO₂ laser beam damage mechanism LY12 aluminum alloy

리 言

激光对材料的破坏机理(效应)与激光作用时间(或脉冲持续时间)、波长、激光功率密度 (或能量密度)、材料的物理性质等密切相关。激光对金属板的破坏作用,有以下几种方式:(1) 采用强脉冲激光(功率密度大于 10^9 W/cm²)对金属板进行冲击破坏,即由激光产生冲击 波^[1,2], 使辐照区边缘产生剪切破坏, 或通过传导至金属内部, 引起板背面层裂; (2) 连续激光 对金属板进行热烧蚀,引起材料的熔化和汽化,导致穿孔破坏;(3)联合加载,即机械加载和强 激光辐照同时作用于金属板,由于材料局部温度上升引起材料强度降低、热膨胀、热软化及部 分熔化产生应力,这种应力是机械应力与热应力的综合。一旦金属板某处应力达到或超过材 料的强度极限,即引起破裂。因此,利用机械加载和激光辐照的联合作用,可在较低的激光功

Table 2	The paramet	ers of laser	irradiating	pre-presse
	strip specime	ns		

specimens a-pre-pulled plate specimens

No. of specimen	laser power (kW)	pre pressed loading (kg)	irradiated time (s)	degree of dam age	No.of specimen	laser power (kW)	stress of pre-pulling (µɛ)	irradiated time (s)	degree of damage
303	2	11	3. 04	bent	201	2.0	33	3.04	bent
302	2	24	2.648	bent	201	2.0	72	2.648	bent
301	2	28	2.40	bent	203	2.0	84	2.40	bent
309	2	32	1. 68	bent	204	2.0	98	1.68	bent
308	2	40	1.60	bent	209	2.0	120	1.60	bent
310	2	45	0.928	bent	210	2.2	25	3.00	melt
Note: The gree of least heat on the specimen is 11mm X			211	2.1	1106	1.00	broken		
11mm				212	2.0	1191	0.8	broken	

1998	年	12	月
------	---	----	---

twisted 5. $5^{\circ} \sim 22^{\circ}$

(380^µE remained after unloading)

twisted 30° twisted 7~ 16

damaged (250^µE remained after unloading)

broken

fractures in laser irradiated area

broken

b-pre-pulled plate specimens						
No. of specimen	laser power(kW)	stress of pre-pressing(µɛ)	irradiated time(s	s) degree of damage		
400	4. 58	355(not blacked)	10	not bent		
402	4.59	334(blacked)	5.0	melt in center and broken		
401	4.80	70(blacked)	4.0	melt and deformed		
402	5.00	109(blacked)	4.0	melt in center and broken		
403	4.78	665(blacked)	2.5	bent to back		
404	5.00	834(blacked)	2.5	bent to front		
405	4.70	812(blacked)	2.5	bent to front		
406	5.08	472(blacked)	3.0	bent to front		
407	4.62	583(blacked)	3. 5	beat to front		
408	4.60	287(blacked)	3.5(unloading at 2.	.90s) bent to front		
409	4.58	710(blacked)	3. 5	bent to front		
	(5014E remained after unloading)					
410	4.55	1027(blacked)	35	bent to front		
		$(300^{\mu}\epsilon \text{ remained after unlocal})$	ading)			
411	4.96	792(blacked)	3.5	bent to front		
		($501\!\mu\epsilon$ remained after unlo	ading)			
Note: The ar	ea of laser beam	on the specimen is f36mm				
Table 4 The parameters of laser irradiating pre-twisted specimens						
No. of specimen	laser power(kW)	pre-twister loading(kg)	irradiated time(s)	degree of damage		
701	5.0	19(not blacked)	10	no any damage		
700	5.0	19(blacked)	1	broken		
706	4.0	8(blacked)	0.8	twisted 3. $5^{\circ} \sim 5.5^{\circ}$		
703	4 0	13(blacked)	1	twisted 5~ 17		

二、实验结果与分析

16(blacked)

19(blacked)

22(blacked)

25(blacked)

25(blacked)

30(blacked)

27(blacked)

在激光对板试件的破坏试验中,采用两种加载方式,一种是预拉加载,另一种是预压加载,

0.4

1.5

0.3

0.4

0.4

0.3

0.4

709

702

710

705

704

707

708

4.0

4.0

4.0

4.0

4.0

4.0

试验用的激光功率是从 2k W 到 5kW,激光作用光斑为 f 36mm,在第一种拉伸加载方式时,保 持激光功率不变,改变拉伸载荷,从表 3a 中可看到,随着预拉伸载荷的增加,试件发生破坏所 需激光作用时间变短。当试件预加载荷为 25^με 时,激光作用时间为 3s,板试件只发生上部穿 孔,下部熔化,未断。当试件预加载荷为 1106^με 时,激光作用时间为 1s,试件断裂。当试件预 加载荷加到 1191^με 时,激光作用时间只需 0.8s,试件就发生断裂。

在预压加载宽板试件的破坏试验中,情况与预拉伸试件类似,即随 着试件预压载荷的增大,试件产生破坏所需的激光作用时间缩短。另 外从表 3b 中还看到,在预压宽板试件的激光破坏试验中,所需的激光 功率比预拉伸载荷大,而且试件并未发生弯曲破坏。而当试件发黑处 理后,尽管预压载荷减小了,但这时只需 5s 试件板中心就熔化断裂,可 见试件经发黑后(即提高试件材料对激光的吸收率),产生破坏所需的 激光作用时间和作用功率比未发黑试件要小得多。试验发现,在预加 拉伸载荷时,激光烧斑区内材料出现热软化,随着激光作用时间的增 长,温度进一步升高,材料出现熔化,凹陷,并伴随喷射出纤维状的熔化 物,在垂直拉伸方向的激光烧斑区,由于热应力与机械应力的联合作用 引起应力集中,在烧斑区边缘产生最大的拉伸应力^[2],沿激光烧斑处 萌生裂纹,裂纹沿直径方向向基体扩展,且裂纹呈层状。图 2 示出激光 作用预加弯曲载荷试件的层裂状况。

图 5 和图 6 示出预加弯曲载荷的试件受激 光辐照后断裂处的断口照片。从图 6 中看到, 激光辐照破坏处断口呈层状,之所以会形成这 类层状断口,是因为在激光烧斑区表面温度高, 造成板材表面熔化,并有部分熔化物喷射出去, 在此处造成凹陷或形成孔洞,这是激光热作用 破坏区。而在烧斑表面与背面之间的中间层, 材料并未达到熔点,但已造成材料软化,由于激

pre-bent loading

 $L = 6.0 \mu \epsilon$

研究表明,在激光烧斑区出现晶界显 示⁽³⁾,某些部位形成孔洞(见图3),并在孔洞周 围产生辐射状裂纹。当激光辐照功率一定时, 随着加载应变的加大,裂纹萌生和扩展的速度 加快,试件发生破坏所需的时间短。随着激光 辐照功率的加大,激光烧斑区边缘的应力会增 加很快,一旦某处的应力达到或超过该处材料 的强度极限,将导致此处的破坏(见图4)。

光热作用和机械加载的联合作用, 也会造成应力集中, 此处可视为塑性破坏区。而在板材的背

面和激光烧斑区以外区域,激光热作用减弱,这时主要是机械应力作用,故此区域属脆性断裂 区。由于上述三个区域所受的激光热应力和机械应力的大小不同,故其断口呈层状(或类似阶 梯状)结构。

图 7 和图 8 示出扭曲试件受激光辐照后破 坏的纵向和横向断面照片。从图 7 中可清楚看 到,在激光热作用和扭曲加载的联合作用下,试 件断裂区沿纵向的微观结构呈扭曲状,并看到 断裂区的"晶柱"结构沿扭曲方向依次变短,这 是因为在激光烧斑区表面,由于激光热作用熔 化试件首先被拉断,远离激光烧斑表面,激光热 作用减弱,材料只产生热软化,这时主要是机械 扭曲应力使其被拉断(此处主要为脆性断裂)。

从图 8 看到, 扭曲试件断裂区的横断面的 显微结构呈瓦片状, 在瓦片状结构中可清楚地 观察到宏观破坏痕迹。同时还看到微观裂纹平 行于激光作用方向, 且裂纹沿试件扭曲方向扩展, 用的结果。

行于激光作用方向,且裂纹沿试件扭曲方向扩展,这是激光热作用应力和机械扭曲应力综合作 用的结果。_______

三、结

(1)激光作用预加拉伸载荷的 LY 12 铝板时,随着拉伸载荷的增加,试件发生破坏的时间 缩短;随着激光功率密度的增加,试件破坏所需的时间减少;随着试件板加宽,断裂破坏时间增 加。(2)在激光与机械拉伸加载的联合作用下,激光烧斑区会产生部分熔化、凹陷,在垂直拉伸 的方向上,激光烧斑区产生应力集中,烧斑区边缘产生的拉伸应力最大,在此处易萌生裂纹,裂 纹沿烧斑直径方向向基体扩展,且裂纹呈层状。(3)在激光辐照和扭曲加载联合作用下,试件 破坏呈扭曲断裂破坏,其断裂处断面呈瓦片状结构,瓦片状结构内的微观裂纹沿扭曲方向扩 展。

参考文献

- 1 周益春,段祝平./强激光与粒子束,1993;5(2):221
- 2 陈裕泽,李思忠,张光军 et al. 强激光与粒子束, 1995; 7(2): 246
- 3 宋武林,朱蓓蒂,罗慧倩 et al. 应用激光, 1996; 16(2): 63

作者简介: 郑启光, 男, 1944 年 12 月出生。教授, 博士导师。现从事激光与物质相互作用及大功率 CO₂ 激光导光、传输 理论的研究。

收稿日期: 1997-07-18

•产品简讯•

二极管激光器多功能驱动电源

美国 ILX Lightwave 公司研制出 LDC- 3700 系列的二极管激光器驱动电源。该电源采用低噪声电流和温控二极管激光器。新的处理器使用高效高速的 CPIEB 并与遥控器相联操作。此电源的精密电流控制可选择如下操作方式:恒流操作、恒功率操作、模拟调制及触发功能控制。

育明 巩马理 供稿