第22卷 第2期

121

另外, 还测量了光束近场分布, 测量位置距束腰处 6m, 束宽 d_z = 21. 109mm, 根据公式(17), 算出束腰宽度为 20. 204mm, M^2 参数为 1. 525。

实验表明,孔栅镜取样后光束较好地反映了入射光的分布,影响孔栅镜取样效果的主要因素是取样点密度,各级间的交叠和探测器位置偏差及噪声等,减小取样点间距和增加透镜焦距都可能提高取样精度。

四、结 论

1 孔栅分束镜提供了一种直接检测大功率激光束光束质量的方法。

2 高倍率孔栅镜在实际加工中存在一定的困难时,可与常规方法结合,用孔栅镜对高功率光束进行第一级衰减,再用常规方法衰减,然后用已成熟的测量低功率的仪器。

3 孔栅分束镜提供了多个取样光束,可同时进行实时诊断如功率、光斑尺寸、发散角、光束的波前等,可以作为 闭环光束控制中的波前探测装置。

参考文南

1 Michal A C, Severna P, Edward W N. US P, No. 4746205(1988)

2 Wiggins T A. AD A172, 1984, 006/9, 26~657, 651

3 Kirtland A F B. Opt Engng, 1981; 20(6):881~888

4 余永林, 吕乃光. 傅里叶光学. 武汉: 华中理工大学出版社, 1991

5 杨成龙,程晓峰,吕百达 et al. 强激光与粒子束,1994;16(4):485

射频激励扩散冷却平板 CO2 激光器谐振腔的分析

吴龟灵 王又青 安承

(华中理工大学激光技术国家重点实验室,武汉,430074)

摘要:对适于平板结构射频激励扩散冷却CO₂激光器的稳定非稳混合谐振腔进行了理论分析。给出了腔参数 与模参数之间的关系,为这种腔的设计提供了理论依据。研究表明:该谐振腔不仅能有效提取激活区的能量,且可输 出单光束偏心椭圆像散光束,获得较高质量的激光。

关键词: 射频激励扩散冷却 CO, 激光器 稳定 非稳谐振腔

The analysis of resonators for RF excited diffusion cooled CO2 planar laser

Wu Guiling, Wang Youqing, An Chengwu (National Lab. of Laser Technology, HUST, Wuhan, 430074)

Abstract: In this paper, stable unstable resonators for planar diffusion-cooled CO₂ laser are analyzed theoretically. The relations between resonator parameters and mode parameters, which provide theoretical basis for the design of the resonators are deduced by the Fox-Li algorithm. The results show that this kind of resonators not only can extract high laser power from the active region efficiently, but also can get a single elliptical astigmatic beam, which is close to the circular Gauss beam.

Key words: RF excited diffusion-cooled CO2 laser stable-unstable resonator

平板型射频激励扩散冷却 CO₂ 激光器具有面放大特性, 对间距为 d、放电区面积 A 的器件, 其总的输出功率 为¹: $P_0 = (f \times P_1)/d \times A$

式中, P₁是常规 CO₂ 激光器单位长度方形横截面上的输出功率; f 是考虑到平板型激光器一维流热与常规激光器 二维流热的差别引入的常数因子。

由上式可见,平板型射频激励扩散冷却 CO₂ 激光器的输出功率与面积成正比。可在长度不很大的情况下,通 过增加放电区的水平宽度来提高功率,从而可获得小型化的高功率器件。但随着宽度的增加放电区成为一矩形区 域,通常情况下光束质量很差,因此,我们选用新的腔型,以在充分利用放电激活区的同时,获得可供工业应用的高质量的光束。稳定-非稳腔是解决这一问题的有效方案^[2-4]。

一、谐 振 腔 的 结 构

平板稳定-非稳谐振腔在窄方向是稳定的,而宽方向是非稳定的。其常见的结构如图1所示。

r₂-r₁= 2l, w₁/w₂= r₁/r₂= M。其光轴在宽方向的另一边(图 1a), 从而限制了光束从此边的输出。

二、衍 射 理 论

用 Fox Li 法计算腔内模式。对通过倾斜形成的非稳腔, 设其输出孔是半径为 a(≤d/2) 的圆, M1 镜上的模满

足:

Yu1

$$\int_{-d/2}^{d/2} \int_{0}^{u} k_{21}(x_{1}, y_{1}; x_{1}', y_{1}') u_{1}^{q}(x_{1}', y_{1}') dx_{1}' dy_{1}'$$

$$\begin{split} K_{21} &= \int_{-d/2}^{a} \int_{0}^{w} k_{2}(x_{1}, y_{1}; x_{2}', y_{2}') k_{1}(x_{2}', y_{2}'; x_{1}', y_{1}') dx_{2}' dy_{2}' \\ &+ \int_{-a}^{a} \int_{0}^{w-a-} \frac{a^{2}-y^{2}}{k_{2}(x_{1}, y_{1}; x_{2}'y_{2}') k_{1}(x_{2}', y_{2}'; x_{1}', y_{1}') dx_{2}' y_{2}'} \\ &+ \int_{-a}^{a} \int_{0}^{w-a+} \frac{a^{2}-y^{2}}{k_{2}(x_{1}, y_{1}; x_{2}', y_{2}') k_{1}(x_{2}', y_{2}'; x_{1}', y_{1}') dx_{2}' dy_{2}'} \\ &+ \int_{a}^{d/2} \int_{0}^{w} k_{2}(x_{1}, y_{1}; x_{2}', y_{2}') k_{1}(x_{2}', y_{2}'; x_{1}', y_{1}') dx_{2}' dy_{2}'} \\ &+ \int_{a}^{d/2} \int_{0}^{w} k_{2}(x_{1}, y_{1}; x_{2}', y_{2}') k_{1}(x_{2}', y_{2}'; x_{1}', y_{1}') dx_{2}' dy_{2}'} \\ &+ \int_{a}^{d/2} \int_{0}^{w} k_{2}(x_{1}, y_{1}; x_{2}', y_{2}') k_{1}(x_{2}', y_{2}'; x_{1}', y_{1}') dx_{2}' dy_{2}'} \\ &+ \int_{a}^{d/2} \int_{0}^{w} k_{2}(x_{1}, y_{1}; x_{2}', y_{2}') k_{1}(x_{2}', y_{2}'; x_{1}', y_{1}') dx_{2}' dy_{2}'} \\ &+ \int_{a}^{d/2} \int_{0}^{w} k_{2}(x_{1}, y_{1}; x_{2}', y_{2}') k_{1}(x_{2}', y_{2}'; x_{1}', y_{1}') dx_{2}' dy_{2}'} \\ &+ \int_{a}^{d/2} \int_{0}^{w} k_{2}(x_{1}, y_{1}; x_{2}', y_{2}') k_{2}(x_{1}, y_{2}'; y_{2}'; y_{2}'; y_{2}', y_{2}'; y_{2}', y_{2}'; y_{2}', y_{2}'; y_{2}'; y_{2}', y_{2}'; y_{2}', y_{2}'; y_$$

式中,

$$k_2(x_1, y_1; x_2', y_2') = ik/(2\pi L) \exp[-ikQ(x_1, y_1; x_2', y_2')]$$

考虑到宽度很大,对 ρ(x1,y1;x2',y2') 取三级近似

$$P(x_2, y_2; x_1, y_1) = L + [(x_2 - x_1)^2 / (2L)] + [(y_2 - y_1)^2 / (2L)] - (1/8) \{ [(x_2 - x_1)^2 + (y_2 - y_1)^2] / l^2 \}^2 - w_1(x_1, y_1) - w_2(x_2, y_2) \}$$

near field

 $w_1(x, y), (w_2(x, y))$ 为考虑了倾斜的镜的面形函数,可由具体的镜型及倾角求得。如对图2 中的非平行双柱面镜 谐振腔它们可表示为: $w_1(x, x) = -r_1^2 - x^2 + L/2 - r_2$

$$w_{2}(x, y) = r_{2}^{2} - y^{2}/\cos^{\beta} - x tg^{\beta} + L/2$$

对上述的表达式,用数值方法即可求得腔内的 自再现模。输出光束是由 M₁上的模经输出孔衍射 产生的,可由衍射积分求得。

三、计算结果及结论

对 w_1 = 30mm, w_2 = 30mm, l= 500mm, d= 4mm, a= 2mm 的非平行双柱面镜谐振腔由几何方 法计算得倾角 β = 1.05×10⁻⁵, N= 54。在此基础 上由衍射理论算得的近场和远场分布如图

Fig. 4 Calculated near-field intensity distribution for off axis confocal unstable resonator

Fig. 3 Calculated near-field and far-field intensity distribution for misaligned di-cyclindrical unstable resonator

far field

r(mm)

由图 3 可见, 远场输出是一单峰值光 束,但由于单边输出,光束在宽度方向发生了 畸变,峰值不在中心位置(r=0)处, 而是偏向 下(φ=0, r>0),且在该方向峰值两边不对 称,这与几何方法分析中的光束偏斜传输(图 2)相对应;在窄方向光束是对称的,因此输出 的是一偏心椭圆像散光束。通过整形可获得 近圆形光束^[5]。

还计算了 w₁ = 30mm, r₁ = 5, l =

500mm, d = 4mm 的双柱面虚共焦稳定-非稳腔的近场和远场分布(图4)。

图 4 对应的输出孔径是一矩形孔,可非常明显地看到远场输出的是一偏心椭圆像散光束。

上述计算结果表明,稳定非稳谐振腔确实能从大面积激活区有效地提取功率,且能输出单峰值椭圆偏心 光束,与采用普通腔型的结构相比有效地提高了光束质量。

参考文献

- 1 Abramski K M, Colley A D, Baker H J et al. A P L , 1989; 54(19): 1833~ 1835
- 2 Jackson P E, Baker H J, H all D R. A P L, 1989; 54(20): 1950~1952
- 3 徐启阳, 宋一新, 王新兵 et al. 激光与光电子学进展, 1995; (2): 298~301
- 4 辛建国,魏光辉.中国激光,1994;21(5):371~376
- 5 Nowack R, Opower H, Schaefer U et al. SPIE Proc, 1990; 1276: 18