USED CARS 测量对撞式扩散火焰的温度分布^{*}

赵建荣 李春金 杨仕润

(中国科学院力学研究所,北京,100080)

摘要: 介绍了用 USED CARS 技术测量对撞式甲烷/空气扩散火焰前滞止区和尾流区的温度 分布剖面。在滞止区富甲烷边观察到甲烷燃烧前的热解过程;尾流区温度高于滞止区温度,表明 在滞止区有未完全燃烧的中间产物存在,在尾流区发现 C₂ 及 CH 的光谱也证明了这一点。

关键词: USED CARS 对撞式扩散火焰 温度分布

Measurements of temperature distribution in a counterflow diffusion flame by USED CARS

Zhao Jianrong, Li Chunjin, Yang Shirun (Institute of Mechanics, Academia Sinica, Beijing, 100080)

Abstract: This paper reports that temperature distribution profiles in forward stagnation and wake region of CH_4 /AIR counterflow diffusion flame have been measured by USED CARS. The pyrolysis zone of CH_4 is observed at the side with rich CH_4 in the stagnation region. The flame temperature in wake region is higher than that in stagnation region. This means there are intermediate products that did not burned completely in the stagnation region. It is proved by emission spectra of C_2 and CH_4 in wake region, too.

Key words: USED CARS counterflow diffusion flame temperature distribution

-、引

过去 30 多年来, 人们一直热衷于利用激光作为非侵入性测量手段取代常规的测量方法来研究燃烧现象。相对于常规的测试手段, 它的优点是可遥测, 快速, 不干扰流场, 好的分辨率和

言

* 中国科学院重点课题"燃烧基础研究"的子课题。

参考文献

- 1 Sagawa M, Fujimura S, Togawa M et al. J A P, 1984; 55(6): 2083
- 2 Lin Tungpo. IBM J R & D, 1967; 11(5):527
- 3 Herbst J F. Phys Rev, 1984; B29(7): 4176

作者简介:张国忠(附照片), 男, 1938年9月出生。副教授。现从事电子物理及电源技术研

刘丽敏, 女, 1959 年 7 月出生。讲师。现从事功能材料研究。 李长江, 男, 1940 年 9 月出生。教授。现从事功能材料研究。

收稿日期: 1996 02-01

对 O 支喇曼散射截面为:

极高的温度测量能力。相对于其它的非侵入性光学测量手段,如自发喇曼和激光诱导萤光,相 干反斯托克斯喇曼光谱 CARS 信号具有:(1)高强度。比自发喇曼高 10⁵ 量级,使得单脉冲测 量的信号也有足够的信噪比,大大提高了测量的时间分辨率。(2)高的抗干扰能力。因为 CARS 信号出现在入射光的短波方向,因此,可与一般均出现在入射光同波长或长波方向的多 种散射信号很好的分开。另外,光路准直容限较大,抗振动干扰能力相对较强。(3)相干特性。 CARS 光束具有空间发射的类激光特性,可以全光束收集,不像其它散射信号具有 4π 立体角 的分布,只能收集很少部分信号。因此,适用于较为恶劣的燃烧环境的测量。由于这些明显的 优点,所以, 70, 80 年代大部分注意力集中于 CARS 技术研究上。这期间, CARS 成功地演示 了内燃机、涡轮机、锅炉、烧煤的磁流体发电机以及具有加力燃烧室的喷气发动机的温度及成 分的测量^[1]。

本文报导了我们用 USED CARS(CARS 谱的非稳腔空间增强探测技术)技术测量的多孔 圆柱前滞止区中的对撞式甲烷/空气扩散火焰的滞止区和尾流区的温度分布,前者可与已发表 的文章相比较,后者则未见有文章发表。

二、理论简述。

CARS 是包含四波混频的非线性光学现象。当频率为 ω 和 ω,的二束激光与介质相互作用时,它们混频产生频率为 2 ω_p-ω,的相干光,即 CARS 光束。这种混频对所有样品都将出现,但只有当 ω_p-ω,趋近介质喇曼频率时,CARS 信号才大大增强,成为共振 CARS 信号。

激光辐射通过介质的第三级非线性电极化率 $X^{3^{5}}$ 与介质相互作用,产生的 CARS 信号功 率可写成^[2]: $P_{a} \propto P_{p}^{2}P_{*} + X^{(3)} + {}^{2}$ (1)

式中, 下标 a, p 和 s 分别为 CARS 光束, 泵浦光束和 stokes 光束。 $X^{(3)}$ 包括共振和非共振贡献 $X^{(3)} = X^{R} + X^{NR}$ (2)

上标 R 和 NR 分别表示共振和非共振。 X^R 可由半经典或量子力学方法得到:

$$X^{R} = \frac{2Mc^{4}}{\hbar\omega_{s}^{2}} \Delta_{d} \frac{d\sigma}{d\Omega} \Big|_{j} \Big[\frac{\omega_{j}}{\omega_{j}^{2} - (\omega_{p} - \omega_{s})^{2} - j\Gamma_{j}(\omega_{p} - \omega_{s})} \Big]$$
(3)

式中, N 为粒子数密度 分为介质的喇曼频率, Γ_j 是喇曼线宽, $d \circ / d \Omega$ 是喇曼散射截面, Δ_j 是 频率为 ω 的振 转跃迁的上下能级聚居数差。

$$\Delta = \frac{e^{-hc/(KT)}F^{\mathrm{L}}(J)}{Q_{\mathrm{rot}}}\frac{N^{\mathrm{L}}}{N} - \frac{e^{-hc/(KT)}F^{\mathrm{U}}(J)}{Q_{\mathrm{rot}}}\frac{N^{\mathrm{U}}}{N}$$
(4)

式中, F(J)为转动对光谱项的贡献, Q_{rot} 为转动配分函数, 右上标 U 和 L 分别为上、下振动能态。当 $\varphi^{\rightarrow} \omega_{p} - \omega_{s}$ 时, X^{R} 变大。定义频率偏调为 $\Delta \omega = \omega_{P} - (\omega_{p} - \omega_{s}), 如果 \Delta \omega / \omega \ll 1$, 并对所有接近 $\omega_{p} - \omega_{s}$ 的 φ 求和, 得到: $X^{R} = \sum_{i} \frac{K_{i} \Gamma_{i}}{2\Delta \omega_{P} - i\Gamma_{i}}$ (5)

$$K_{j} = \left. \frac{2Nc^{4}}{\hbar_{i}\omega_{s}^{4}} \Delta_{j} \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \right|_{j} \Gamma_{j}^{-1}$$
(6)

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\Big|_{Q} = \frac{\omega_{\mathrm{s}}^{4}\hbar}{c^{4}2M\omega_{0}}\Big[\alpha^{2} + \frac{7}{45}b_{J}^{J}\chi^{2} \quad (V+1)$$
(7)

M 为对比质量, ω_0 为分子振动角频率, b_1^J 为 Placzek-T eller 系数, $\alpha \pi \gamma$ 分别为分子极化率的 各向同性和各向异性部分的微分, *V* 为初始能级的振动量子数, *c* 为光束, h= $h/(2\pi)$, *h* 为普 朗克常数。

以上是对严格单色光而言。实际上, 泵浦光有一定的线宽(约1~2cm⁻¹),特别对宽带 CARS 而言, Stokes 光束带宽为100cm⁻¹左右, 因此需考虑卷积展宽影响。考虑到 $\Delta\omega_{p} \ll \Delta\omega_{q}$, 最后得到: $P_{s}(\omega_{a}) \sim P_{p} \int P_{s}(\omega_{p} - \delta) + X(\delta) + {}^{2}d\delta$ (8)

由理论计算的 CARS 谱线型与实验测量的 CARS 信号拟合即可得到测试对象的温度和克分子 浓度。拟合的结果已为国际公认。

三、实验系统及燃烧器

借助于力学研究所超音速燃烧实验室的设备完成了本文测量工作。实验系统如图1所

Fig. 1 Schematic illustration of the USED CARS experimental arrangement

YAG-YAG laser DYE-DYE laser BS-beam slpline BE-beam expander D-dichroic mirror L-lens CMB combustor SF-spatial filter O-optical filter OF optical fibre R-reflector S-spectrometer ICCD-image intensified CCD C-controller P-pulse generator MC microcomputer M-monitor

光(ω_s)。其余的 YAG 激光束的 60% 能量的 10% (约 50 mJ/ pulse) 被用作泵浦光(ω_p)。 ω_p 经4 个全反镜构成的适当延时 光路与 ω_s 相会在双色镜 D L, 使 ω_s 在 ω_p 中心穿过以满足 USED CARS 相位匹配要求^[3]。然后被聚焦到待测火焰上, 经空间滤光片, 干洗滤光片使得仅 CARS 光束被送入光纤。 CARS 光束经光纤传输进入光谱仪(美国 Spex 公司生产的 Spex 5000M 型, 配有 2400 槽/mm 的全息光栅) 被光学多通 道分析系统(OMA) 采集、贮存。该系统包括增强型 CCD 探 测器, 控制器, 脉冲发生器均为美国 Princeton Instruments 公 司生产。得到的 CARS 信号与美国 Sandia 国家实验室的 CARS 计算程序拟合确定所测温度值, 其精度不低于 5%。

自行设计制造了形成对撞式扩散火焰的燃烧器,结构如 Fig.2 Diagram of burner 图 2 所示。圆柱形燃烧器长 100mm,上半圆为黄铜结构,通水冷却。下半圆为 CH4 的多孔喷 头。为代替难以获得的青铜粉末烧结材料,该半圆喷头也采用黄铜结构,每毫米切出 0.22mm 宽狭缝共 98 条,然后外面包敷一层 100 目不锈钢丝网。空气由下部鼓风机送入,途经扩张段, 收缩段,稳定段及不同位置的多层不锈钢丝网与燃烧器喷头喷出的甲烷相撞。为测量需要,在

示。YAG激光器为美国光谱物理公司生产的Quant-Ray GCR290,脉冲重复率30Hz,0.532nm激光输出能量为800mJ/pulse,脉宽7ns,线宽1cm⁻¹,非稳腔结构使得输出光斑为环模。YAG激光束的40%能量用来泵浦加拿大Lumonics公司生产的SpectraMaster HD-500P型染料激光器,(该染料激光器充以浓度为2×10⁻⁴ 克分子的R640的甲醇溶液),为获得好的输出模式结构,采用其特制的配件,Bethune放大池,获得20mJ/pulse,半高全线宽(FWHM)为110cm⁻¹的圆型光斑,其中心波长为607nm,此光束即用作Stokes

尾流区用一石英窗,滞止区开一长条孔,整个燃烧器由一升降台支撑,以调节测量点的高度,水 平位置靠手动平移,以激光点的位置判定水平移动距离。实验证明,这种结构可形成极为稳定 的前滞止区,但尾流区火焰有慢周期摆动。

四、结果及分析

滞止区的温度剖面如图 3 所示。图 4 为实验得到的氮的 Q 支 CARS 谱与理论计算的拟

我们测量的滞止区温度剖面结果可与文献[4~6]的结果作 比较。附表表明不同作者的测试结果。这些测量结果的温度剖

Fig. 6 Temperature distribution at different height in a wake region of counterflow diffusion flame 面形状基本一样, 只是我们的结果与 Tsuji^[4]一样,在火 焰面的燃料边都有 一个温度缓变区, 明确显示了甲烷热 解过程的存在。附 表中^[4~6]的后三 项数据(Sick等的 最高温度数据除

外)是由文献图中读出的, 因此只是近似值。我们的 结果与所引文献结果的差 异可由气流条件的差异得 到解释:由于我们的流速 偏低,火焰更贴近燃烧器 喷头,因此,火焰的热损耗 较大,其结果是火焰温度 降低而喷头表面温度升 高。

图 5 为尾流区的温度 分布测量结果。图中仅标 出径向距离为 0 和 17mm 的实验点以避免几个位置 实验点的混淆。由于尾流

区火焰有慢周期摆动,加之火焰区温度梯度较大,所以测量温度有较大跳动,而处于火焰区之外的离中心线 17mm 的数据点则较为平滑,这是因为火焰的摆对它的影响不大。图 6 为由图 5 导出的不同高度的温度分布。可以看出,随高度的增加,温度最高点向中心移动。图 7 为由 图 5 导出的尾流区二维温度分布,图中虚线为火焰面边界线。尾流区的结果没有文献数据可

Fig. 8 Visible emission spectra in a wake region of CH₄/AIR counterflow diffusion flame

与之比较。尾流区温度高于滞止区温度的原因,一是由于 滞止区温度偏低;二是空气流速过低,导致喷头下方部分区 域燃烧不完全,而在喷头上方与周围空气混合而继续燃烧 所致。这一点可由图8所记录的尾流区火烧发射光谱得到 证实。在尾流区发现有强烈的CH和C2的发射谱,除此之 外还发现了Na的发射谱。CH和C2的发射谱,除此之 外还发现了Na的发射谱。CH和C2的发射谱,除此之 也将会对燃烧过程及最终的温度产生影响。在这种特定的 燃烧环境下,CH,C2和Na也将对燃烧的化学反应动力学 过程产生影响。

Table Comparison of measured results in a forward stignation region of CH4/ AIR counterflow diffusion flame

authors	vebcity of air(cm/ s)	velocity of CH $_4($ cm/ s)	high est temperature (K)	distance of luminous flame zone from burner head(mm)	tem perature at surface of burner head(K)
T suji, etc. ^[4]	150	19.5	1780	3.0	323
Wolfrum ^[5]	250	/ (())	1980	2.3	510
	350		1850	1.8	510
	15	XD	1850	4	300
Sick, etc. ^[6]	125	11.4	19.9	3	480
this paper	8	6.6	1658	1.3	650

感谢力学所超音速燃烧实验室提供的大力帮助。

参考文献

- 1 Eckbreth A C, Dobbs G M, Stufflebeam J H et al. Appl Opt, 1984; 23: 1328
- 2 Hall R J. Comb Flame, 1979; 35: 47
- 3 赵建荣,李春金.激光技术,1993;17(3):131
- 4 Tsuji H. Prog Energy Combust Sci, 1982; (8):93
- 5 Wolfrum J. Combust and Flame, 1989; 78: 13
- 6 Sick V. Two-Dimensional Laser Diagnostics and Modling of Counterflow Diffusion Flames. 23 rd Symp. (Intern.) on Combustion, Pittsburgh: The Combustion Institute, 1990: 495~ 501

作者简介:赵建荣(附照片),男,1940年3月出生。副研究员。主要从事激光诱导光谱研究。 李春金,女,1942年5月出生。高工。主要从事激光诱导光谱实验研究。 李仕润,男,1966年4月出生。在读博士。主要从事激光诱导光谱计算与实验研究。

收稿日期: 1996-03-22 收到修改稿日期: 1996-06-04