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Changes of super Gaussian beams upon propagation

L Baida, Wang Xiging, Zhang Bin
(Institute of Laser Physics and Laser Chemistry, Sichuan University, Chengdu, 610064)

Abstract: Numerical calculations have been performed to describe the propagation of super G aussian
(SG) beams and the changes in the intensity (amplitude) distribution and phase behavior. The condition
has been discussed, under which SG beams preserve t heir shape and order, while passing through paraxial
optical systems.
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iv, Introduction

In recent years great attention h@eﬂ paid to super Gaussian (SG) beams due to their im-
portance for some practical applications. So far, the propagation of SG beams and distortions of the
or-axis intensity have been studied numerically' !, and analytical expressions by means of a local
expansion in Lagurre-Gauss (LG) or Hermite- Gauss (HG) beams has been proposed to characte-
rize the propagation of SG beams'”!. The aim of this paper is to give a detailed study of the
changes in both intensity profiles and phase behavior of SG beams upon propagation. The distor
tions originate from the physical reason that the paraxial wave equation in free space does not ad-
mit a SG solution. Fortunately, there exists a condition, under which SG beams retain their shape

and order unchanged.

(€. SG beams are not eigensolutions of the wave equation in free space

It is welk known that the electre- magnetic field E(r, 8, z) in the stationary state obeys the

Helmholtz equation, which, in the cylindrical coordinate system (r, 0, z),is given by

1 0, 0E(r,0, z) LazE(r,e,z) azE(r,e z) > B
rar(r P )+ 2 202 + 3.2 + E°E(r,0,z)=0 (1)
where k& denotes the wave number, k= 27/ N A—wavelength).If E is independent of 0, Eq. (1)

is simplifiedto 1 0| OE(r.0.z) ’E(r.0.z)
r or r or + azz

+ KE(r,0,z)=s0 (2)
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Consider an initial field in the place of z= 0 which takes the form of SG beams

E(r,z= 0)= exp/— (r/wo)"] (3)
where wo and n (n> 2) are the waist radius and order of SG beams, and in two limiting cases of
n= 2 and oo, Eq. (3)describes the Gaussian beam and plane w ave, respectively. Thus, for an arbi-

trary propagation distance, say z, the field E(r, z) is assumed to become

E(r.z)= fi(z)exp[= faz)(r/w0o)"] (4)
with S1(0) = f2(0) = 1 (3)
T he substitution from Eq. (4) into Eq. (2) and comparison of the terms r/ wo with the same or
der ( n> 2) yield fi(z)f2z)=0 for(r/wo)n_2 (6a)

dféz(z2d22122 + iz )M_O for( r/wo)" (6b)

fi(z)f3(z) = 0 for(r/wo)*" " (6¢)
Fi(z)[df2(z)/dz]*= 0 for(r/wo)’n (6d)
It can be readily seen from Eq. (6) that the solution of the form Eq. (4) is not admissible for
the wave equation (2) because Eq. (6a) and Eq. (6¢) directly contradict Eq. (5).
Furthermore, in the paraxial approximation Eq. ( 2) becomes

azE(r z) laE/(r,z) aE/(r,z)

or? r or - 20k Oz =0 (7)
with E(r,z)= E(r, z)exp(— tkz).The similar way as above leads to
Si(z)f2z) =0 (8)

Thus, we have shown that SG heams are not solutions of the Helmholtz equation and the
(@

paraxial wave equation, but apparent o limiting forms of n= 2 and n= o0 are the solutions

Eq.(7) and Eq.(2), respectively.
@ Propagation of SG beams

T he propagation of SG beams in free space is characterized by the Huygens— Fresnel diffrae-

Eo(r2,z) = izexp[Lk(z+ 2 )]J‘ E(ri, 0)]0( )exp(2 )rldrl (9)

with Jobeing the Bessel function of the zero order. On substituting from Eq. (3) into Eq. (9) and

tion integral

after some algebras, we obtain the field distribution E2( r2, z) of SG beams passing through a dis-
tance z in free space Ex(ro,z) = F(ro,z)exp[i(kz+ Y12 z)] (10)

where

F(ra z) = ZJTNWJ.; vexp(—= v")J ol 27N v ;_i))exp(iﬂ]\fwvz)dv (11)

kr3 o
O(ro, z) = 2Lz2+ arg{J}i vexp(— v")Jo( 27N v ;—i))exp( iJTN";vz)dv} (12)

and N, is the Fresnel number associated with the beam Nu= wd/ X% (13)
From Eq. (11) the intensity distribution /(r2, z) is readily obtained, which is given by
In(ra,z)= F(ronz)F (raz) (14)

Numerical calculations were performed on a 486 computer, using Simpson’ s method and Eq.
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The intensity distribution /,( r,,z ) (arbitrary wnis) as a function of the normat
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(I1), (12) and ( 14).
T ypical resulis are com-
piled in Figs. 1, 2 and 3,
the results for the Gaus-
sian beam is depicted te-
gether for the convenience
of comparison. Fig. 1 gives
the intensity distribution
I2(r2, z) of SG beams as
a function of the norma
lized radial coordinate r o/
wo and the Fresnel num-
ber Nw, showing the dis-
tortions in both radial and

axial intensity profiles. As-

sume that w o= Imm and A= 1Hm, from Fig. 2, where the radial intensity profiles of SG beams

are represented for different propagation distances z (i.e., Nw) and SG orders n, we see clearly

that for the near propagation distances, for example, z= 1m, 0. 5m, 0. Im, corresponding to N, =

1,2, 10, the distortions increase with increasing n, the dips and ripples in intensity profiles are ob-

servable for higherorder SG beams. Nevertheless, the Gaussian beam retains its form unchanged
upon propagation (n= 2 in Fig. la, 2). On the other hand, for the far propagation distances, e.

g.,z=10m ( Ny = 0. 1) intensity pfofiles of SG beams with different orders n become more

smooth, and approach the Frauhofer diffraction pattern. Similar behavior is seen in the phase pre-

files of SG beams shown in Fig. 3, where the phase ¢(r2, z) is plotted against r2/ wo for different

n

and Nu: .
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Fig.2 The radial intensity profiles /,(r,, z) (a u.) are rep

resented for n= 2,3, 6, 12,36 and 100
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(&) The condition that SG beams preserve their shape and order upon propagation

T he above analysis has shown that SG beams undergo distortions while propagating even in
free space, which is not desirable for the practical purpose. Obviously, a question arises: Can SG

beams preserve their shape and order on a certain condition? It is welt known that the beam prop-

A B
agation through a paraxial optical system with a transfer matrix|:c Di|€ i6 characterized by the

generalized Huygens Fresnel diffraction integral

E2(x2,v2,2z)=[i/( AB)]eXp(ikz)J.jEl(xl,yl,z = O)exp{[ik/(2B)][A(x%+ y%)

— 2xix2+ yiy2)+ D(x3+ y3) ]} dady (15)

Letting B= 0 in Eq. (15) and recalling the formula of the & function
§x.y)= Jim(PIMexp/~ Po(x+ y7)] (16)
and the relation of ABCD matrix elements AD - BC = 1 (17)

lead to  Ea(x2, y2,2) = (VA)explik[z+ (C/2A)(x3+ y3)]}Ei(xo/ A, yo/A)  (18)
On substituting from Eq. (3) into Eq. ( 18), in the cylindrical coordinate system we obtain
Ex(r2,z)= (V/A)exp{ik[z+ (C/24) r%]}exp[— [r2/ (1 Al wo)]") (19)

F Thus, after passing though optical imaging systems of

RP, /\ RP, B= 0, SG beams retain their shape and order unchanged,

0F — 2 hut amplified ( or squeezed) by a factor 1/ A , the spot ra-

V dius becomes w ol A1 and the phase is radially modulated
L L _.‘ aterm (C/2A)r3.

Fig.4 A lens imaging system A simple example of the imaging system is shown in

Fig. 4, where L and L 7 are the distances between the object plane RP; and thin lens F, the image
plane RP> and F, respectively. The transfer matrix M from RP{to RP; reads

A B 1- Lo/f Li+ L2- LiLo/
Mf= = k (20) &
cC D - Uy 1- L/f
with f being the focal length of the lens. By letting B= 0 we have
I/Li+ 1/L2= V/f (21)

which is the welk known imaging equation of the lens. The SG beams of the form Eq. ( 3), after
propagating through the lens imaging system from RPi(z= 0) to RP2( z= L+ L), become
Ez(rz, Li+ Lz) = (— L 1/L2)exp{ik[(L1 + L2)+ (L 1/2L2f)r%] }

expf{— [(Lir2)/(woL2)]")} (22)

(). Conclusion

In conclusion we have studied the propagation characteristics of SG beams. Although it is
possible to give approximate expressions of SG beams by means of LG or HG beams' 2J, the

essential distinction between them should be noted, i. e., SG beams are not eigensolutions of the
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Selecting technological parameters from laser induced phase
transformation hardening processes of materials

Ren Enyang, Chen Tieli, Lin Yu, Li Junchang
(Institute of Laser Application, Kunming Institute of Technology, Kuming, 650093)

Abstract: We solve the heat conduction equation w ith sem+ infinite boundary condition and present
a mathematical model to emulate the relationship of the technical parameters ® (beam radius), »
(scanning speed) and P( laser power) of phase transformation processing to depth and width of the
hardened region. The comparisons of epfglation with tested results show that t he average relative errors of
width and depth of hardened region a% and 18. 7%, respectively. This results are meaningful for
better selection of technical parameter.

Key words: laser phase transformation hardening technological parameter

paraxial wave equation in free space. Fortunately, SG beams preserve their shape and order, while

propagating through optical imaging systems, which would be useful for some practical

applications. Finally, we would like to point out that the results in sections 3 and 4 are valid for the

unapertured case. The propagation properties of apertured SG beams will be published elsewhere.
T his work was supported by the National H+T ech Foundation of China.
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