版权所有 © 《激光技术》编辑部 http://www.jgjs.net.cn LASER TECHNOLOGY

Vol. 20, No. 6 December, 1996

铸铝激光熔融处理后的组织与性能

朱祖昌 邱

(上海工程技术大学,上海,200335)

摘要: 应用光学和电子显微镜及显微硬度计研究了铸造 A+Si 合金经激光表面熔融处理后的 组织和性能。指出,组织分熔化区、过度区和基体三层。在熔化区中树枝状先共晶 α 相的平均宽 度由原始组织的 20~40μm 细化到 2~3μm,同时共晶组织也被大大细化。这些变化使显微硬度值 由 67.4 提高至 109~115。

关键词: 激光材料加工 铝合金 热处理 显微组织

Microstructure and property of cast aluminium alloy after laser remelted treatment

Zhu Zuchang, Qiu qiu (Shanghai University of Engineering Science)

Abstract: By means of the optical microscope, scanning electron microscope and microhardness-meter, the paper deals with the microstructure and property of a cost aluminum alloy after laser remelted treatment. The microstructure can be divided into remelted zone, transition layer and substrate. In the remelted zone, the width of dendritical pro-eutectic α phase has been fined to 2~ 31^µm from 20~ 40^µm original state. Meanwhile the eutectic microstructure has also been broken up extremely. These changes make the microhardness of the treated surface be increased to 109~ 115^µm from 67.4.

Key words: laser material processing aluminium alloy heat treatment microstructure

铸铝合金具有较优良的机械性能、良好的抗蚀性能和良好的工艺性能,生产工艺简便,成本也较低廉,因而在汽车和航空工业中应用广泛。汽车生产为了减轻自重、节约能耗,对铸铝材料需求不断增长。有报导,汽车工业应用的铸铝件占铸铝件总量的 60% ~ 70%。在铸铝件中AlSi合金占有突出地位。

铝合金的许多性质由其金相组织决定,因为铝不具有同素异构转变,控制金相组织主要表现为控制铸铝合金的晶粒度。有介绍,铝合金的晶粒直径一般在 0.127mm~12.7mm 范围内,当平均直径不大于 1.0mm 时,它将具有较好的机械性能^[1]。

本文研究的是应用激光束对铸造 Al-Si 合金的表面进行熔融处理而进行表面改性。在国 内外这方面的工作尚少见报导。

二、试验材料和方法

本试验用的材料为 AI-Si 系铸造合金, 化学成分为: Al 89.4%, Si 9.7% 和 M n 0.9%。其 原始组织为先共晶 α 相加共晶(图 1), 共晶为 α 相基体上分布着短杆状和粒状 Si, 这是典型的 变质后的亚共晶铸铝合金组织, 其合金相图可用 AI-Si 二元系来分析(图 2)。

版权所有 © 《激光技术》编辑部

fis.net.cn

激光熔融处理在HJ3型千瓦级横 流连续 CO2 激光器和 QJJ-1 型激光加 工机上进行,激光束波长 10.6^{µm},光 束模式为多模,焦平面上光斑直径为 2mm,焦距为 110mm。试样处理面位 于焦平面上。激光加热功率为 1000W,工件扫描移动速度为10mm/s。 显微组织分析在 Olympus 型光学金相 显微镜和 Hitachis 2700 型 SEM 上进

行。显微硬度测定在 HX-1000 型显微硬度计上进行, 载荷 50g, 作用时间 15s。

三、结果与分析

1. 显微组织

336

的扩散速度快,成分相当均匀,而在接近熔池边缘部位,原此的管理,不知识, 2013, 1021 子的扩散速度缓慢, Si 含量相应降低,这样导致含 Si 量的 分布如图 4a 示,相应其凝固点如 b 所示。

当熔池温度梯度如图 4b 中 G1 时, 画剖面线部位已

趋于过冷状态,可以结晶。由于这种过冷状态不是成分过冷,则结晶 的液/固界面将以平面状进行推移,同时人们易于理解,这时结晶一 般不需另行形核,而是以原来的先共晶 α 相的界面作外延生长来进 行。十分明显,由于激冷,这时新生长的 α 相的成分不同于原来的

100)

Fig. 5 Extrapolating growth of pro-entectic α phase of ascast A+Si alloy (a) × 1000 (b) × 3000 先共晶 α 相, 其含 Si 量要高些, 如图 2 中 α2 处的成分, 所以在组织上是可 加区分的(图 5)。 可以推理, α 外延 生长的距离是有限

制的,如可将对应于图 4b 中 \triangle 一段距离表示。这种组织形成机制 和我们以前的工作^[3,4]相近。

(2) 熔化区的组织 在凝固进入 Al-Si 合金成分均匀部位,由于 激冷速度快,Si 原子扩散速度慢,将会在液/固界面前沿形成 Si 原子 的堆积,相应的凝固点变化如图 4d 所示,当熔池中温度梯度如 G₂

时, 在液/ 固界面前沿将出现成分过冷区, 这样会得到树枝状或胞状组织^[5]。一般树枝或胞都 是在过渡区的一层 α 相上长出, 图 5 中十分明确地指出了这一点。同时, 先共晶 α 相也会在 第20卷 第6期

预先存在的 Si 颗粒周围形成. 如图 6a,b 和 c 所示。

版权所有 C

Fig. 6 Microstructure on the borderland of remelted pool (a) $\times 2000$ (b) $\times 2000$ (c) $\times 2000$

熔池凝固后的组织为先共晶 q+ 共晶组织

Fig. 7 Microstructure in the laser remelted pool (a) $\times 6000$ (b) $\times 15000$

先共晶 α树枝干大为细化,其宽度将由处理前的 20~ 40μm 细化成 2~ 3μm,相应细化了十倍 多。另外两者的相对量比也与原来比例不相同,这可由图 2 易于推知。这儿还应着重指出: 共 晶组织将是由极细的树枝状或点状的 Si(枝晶宽度约 0.1~0.3 μ m)分布在 α 基体相上(图 7), 这形貌与处理前的共晶组织迥然不同。熔化区中的这些组织变化很显然会影响到熔化区的性 能。

Table Microhardness of A4Si casting alloy after laser remelted treatment

distance apart from surface	0. 05mm	0. 15mm	0. 20mm	0. 25mm	0.30mm	0. 35mm
microhardness	113.2	115.2	115.2	109.3	67.4 67.4	

2. 熔融处理后的硬度性能

由处理表面至心部,相应测得的显微硬度值列于附表中,相应的硬度分布曲线见图8.硬 度的变化与组织的细化程度有关。可以推知,由于熔化区/基体交界 $\mathbf{n}\mathbf{v}$ 100 面十分明显,熔化区中组织细化均匀一致,这使硬度的变化发生陡 80 60 变,这一点与一般钢铁材料激光处理后的硬度梯度曲线不同。

四、结

1. 铸造 Al-Si 合金经激光熔融处理后的组织分熔化区、过渡区 和基体三层。

 过渡区组织是原先共晶 α 相以外延生长方式作平面状推移 而形成.其成因与我们提出的机制有关。

3. 熔化区中先共晶和共晶组织的形态都发生了变化, 而且组织大为细化, 其中先共晶枝 干细化了10倍多。

4. 在本研究下,铸铝表面经激光变质处理后显微硬度从 67.4 提高到 109~115。

文 考 献

李应堂, 余风伦, 李庆春主编. 现代汽车铝铸件. 上海: 上海科学技术出版社, 1990: 253

虞觉奇,易文质,陈邦迪 et al.编译. 二元合金状态图集. 上海:上海科学技术出版社, 1987: 712

论

- 3 朱祖昌, 张光钧, 王维荣 et al. 中国激光, 1991; 18(2): 132
 - 4 朱祖昌, 潘惠泉. 金属学报, 1991; 27(2): A121

5 Flemings M C. Solidification processing. New York: McGraw-Hill, 1974: 364

作者简介:朱祖昌,男,1941年1月出生。副教授。现从事激光材料加工、相变、金属学及材料 处理的研究。在国内外发表论文近 30篇。

distance apart from surface

Fig. 8 Microhardness distribution curve of Al-Si casting alloy after laser remelted treatment

铸铝激光熔融处理后的组织与性能