钛宝石激光器的性能同元件参数的关系

邬承就

(中国科学院安徽光学精密机械研究所, 合肥, 230031)

摘要:根据纵向泵浦激光器优化理论,计算不同 FOM 值钛宝石的最佳斜率效率,不同 Q 值钛 宝石在不同泵浦功率条件下应取的合适长度和输出镜参数,由它可能产生的最大输出功率及所需 阈值。讨论了性能提高的可能性。

关键词: 钛宝石激光器 性能

Ti sapphire laser performances and the dependence upon the part parameters

Wu Chengjiu

(Anhui Institute of Optics and Fine Mechanics, Academia Sinica)

Abstract: According to the optimum design theory of a longitudinally pumped laser, the optimum slope efficiency of a laser of Ti sapphire with different FOM-value, the maximum output power of a laser of Ti sapphire with different Q-value for different pumping power, the threshold, the optimum part length and transmittance of the output mirror have been calculated. The possibility of improving laser performances are discussed as well.

Key words: Ti sapphire laser performance calculation

? —、引

目前, 钛宝石已制成多种运转方式的可调谐激光器[1], 除了闪光灯泵浦器件外, 大多数由 其它绿激光纵向泵浦。Sanchez等[2]应用 Moulton[3]的纵向泵浦理论估算钛宝石激光器的性 能。但是,由于元件参数甚多,性能与参数的关系复杂。本文作者[4]对纵向泵浦激光器进行 了优化设计分析。引入吸收密度、材料优值、品质因素三个元件参数,利用求极值方法,推导出 激光器最大输出功率, 最佳斜率效率的极值方程和条件方程, 确立了优化设计和优选元件的原 则,本文报导对钛宝石激光器的理论计算结果,讨论提高钛宝石激光器性能的途径。

二、激光优化性能同元件参数的关系

为了提高激光输出等性能,已有双向泵浦^[1,5,6]非稳腔^[7]等新型设计。本文不讨论这些专 门情况, 而讨论最常用的一般情况。用小光束腔模激光聚焦泵浦、连续驻波腔、低阈值、元件端 面为 Brewster 角的条件下, 激光器的阈值、斜率效率和输出功率分别为[4]:

$$P_{\text{th}} = \begin{cases} k & x \\ Q f(x, T) \end{cases} \tag{1}$$

光技术 **jgjs@sina.com** * 国家自然科学基金和"八五"攻关项目资助。

邬承就 钛宝石激光器的性能同元件参数的关系

$$\mathfrak{I} = BFTf(x, T) \tag{2}$$

$$P_{\text{out}} = \eta_{\text{s}}(P_{\text{in}} - P_{\text{th}}) = BFT P_{\text{in}}f(x, T) - \frac{k}{Q}x$$
 (3)

$$f(x, T) = \begin{cases} 1 - \exp(-x) \\ F(T + L_i) + x \end{cases}$$
 (4)

有关参数意义是

阈值系数
$$k = \frac{hc}{4\sigma_e T_r} \frac{\lambda}{\lambda} (1 + a^2)$$
 (5)

效率系数
$$B = \prod_i f_i \lambda_i / \lambda_i$$
 (6)

吸收密度
$$X= \alpha_p l$$
 (7)

材料优值(FOM)
$$F = \alpha_p / \alpha_l$$
 (8)

品质因素(Q 值)
$$Q = \alpha_p F = \alpha_p^2 / \alpha_t \tag{9}$$

以 A_{nr}^{+} 激光(488nm) 为泵浦光, 输出激光波长 780nm, 辐射截面取 $Q = 30 \times 10^{-20} \text{cm}^2$, 荧光寿命 $V_{\text{r}} = 3.15 \mu_{\text{s}}$, 结构参数(1+ a^2) = 3(相当于束径比 $a = W_p / W_l = 1.42$), 算出 $k = 0.15 \mu_{\text{s}}$

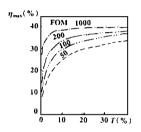


Fig. 1 The optimum slope efficiency of a CW laser of Ti: sapphire with different FOM-value vs the transmittance of the laser output mirms.

25. 2W/cm。文献报导^[2]的内量子效率为 55% ~ 75%, 取 $\Pi = 65\%$,结构因子取 $f_i = 1$,算出 B = 0. 407。此外,其它含义是 h为 planck 常数, c 为光速, T 为输出镜透过率, L_i 为其它光学元件插入损耗, l 为钛宝石元件通光长度, P_{in} 为泵浦功率, α_p , α_l 分别为钛宝石在泵光波段和激光波段的吸收系数。由(1) ~ (3)式可见,选定钛宝石(k, B, F, Q)后,其激光性能仅随元件吸收密度(长度和浓度)和输出镜透过率变化而改变。

(1) 斜率效率 具有极值, 由 $\partial \eta / \partial x = 0$ 求出。

最佳斜率效率:
$$\eta_{so} = BFT/\exp(x_0)$$
 (10)

条件: 其吸收密度(最佳值) Xo 需满足

$$\exp(X_0) - X_0 = F(T + L_i) + 1$$
 (11)

图 1 为不同 FOM 值钛宝石的理论斜率效率与输出镜透过率的关系。高 FOM 值元件的增大趋势更陡, 斜率效率的极限值是 B。

(2) 输出功率 具有极值, 由 $\partial P_{\text{out}}/\partial X=0$ 和 $\partial P_{\text{out}}/\partial X=0$ 联立方程求出。 $L_i=0$ 情况下简化结果是最大输出功率: $B_i = A_i X$

 $P_{\text{out max}} = \frac{kB}{Q} [2(e^{x_{00}} - 1) - x_{00}]^{2}$ $= \frac{kB}{Q} (FT_{00})^{2}$ (12)

条件: 吸收密度(Xoo)和输出镜透过率(Too)必须满足

$$4(e^{x_{00}} - 1)e^{x_{00}} = QP_{in}/k$$
 (13)

$$FT_{00} = 2(e^{X_{00}} - 1) - X_{00}$$
 (14)

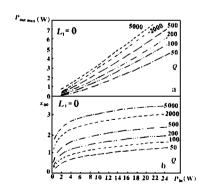


Fig. 2a The maximum output power of a Ti sapphire laser vs the pumping power for different Q-value Ti sapphire (above) Fig. 2b The appropriate absorption density of a Ti sapphire part with different Q-value for optimum output design vs pumping power (below)

算出理论最大输出功率,结果如图 2a 所示。

(3) 阈值 不存在极值。若按优化斜率效率设计, 阈值为

$$P_{\text{tho}} = \frac{k}{Q} X_0 \exp(X_0) \tag{15}$$

若按优化功率设计, 阈值为(Li=0情况)

$$P_{\text{thoo}} = \frac{2k}{Q} X_{\text{oo}} \exp(X_{\text{oo}})$$
 (16)

两种阈值不相等。后者结果如图 3 所示。

(4) 元件参数 包括钛宝石的质量参数、通光长度和输出镜透过率。质量参数有 α_p , α_l , F, Q, 独立的为两个。由最佳吸收密度 X_{∞} 计算值可以计算元件的最佳长度 $l_{\infty}(X_{\infty} = q_p l_{\infty})$ 。图 4 为

三、结果讨论

分析表明,钛宝石的激光阈值随Q值增大而下降。目前一般晶体Q

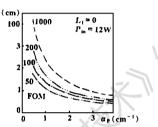


Fig. 4 The optimum length of a Ti: sapphire part with different FOM-value for optimum output design vs its main absorption coefficient with conditions of $P_{\rm in}$ = 12W and L:=0

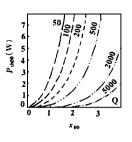


Fig. 3 The threshold of a Tisapphire laser with optimum output vs the appropriate absorption density of the Ti-sapphire part with different Q-val-

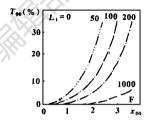


Fig. 5 The optimum transmittance of the output mirror of a Ti sapphire laser for optimum output design vs the appropriate absorption density of the Ti sapphire part with different FOM-

= 50~ 400 cm⁻¹。例如, 若元件长度 l= 3.5 cm, q, = 1.2 cm⁻¹, F= 100(Q= 120 cm⁻¹), 理论阈值为 7.3 W; 若 F= 50(Q= 60 cm⁻¹), 则阈值高达 11.1 W。大量实验表明, 长度大于 3.5 cm 的钛宝石元件很难产生激光。我们曾把同等质量的元件切短成 l= 1.14 cm, 理论阈值为 2.26 W, 实验阈值 l= 3.4 W。计算表明, 若采用 l= 2000 cm⁻¹ (l= 1000, l= 2 cm⁻¹)的钛宝石薄片,则可能做成阈值 l= 100 mW 以下的超低阈值激光器。

钛宝石激光器的输出功率受晶体 Q 值影响很大。在优化设计情况下,由 12W 泵浦,用 Q = $100\,\mathrm{cm}^{-1}$ 的晶体,理论最大输出为 2. 1W; 若改用 Q = $2000\,\mathrm{cm}^{-1}$ 的晶体,则最大可达 3. 7W。用这种晶体,按 20W 泵浦设计,理论最大输出 6.5W。

本文计算工作做完成文后,看到 Pinto 等人 $^{[10]}$ 用质量参数差别很大的钛宝石做的激光实验结果。根据提供的参数,用上述理论进行了计算,两种结果同列于附表。比较可见,理论最大激光输出功率与实验结果完全相符,理论和实验阈值也很相近。此外,从 2,3 号样品的数据比较可见,尽管二者的 FOM 值相差近一倍,输出功率和阈值的差别都很小。原因可以从二者的 Q 值相接近来解释。结果进一步证明,"最具代表性的质量参数是 Q 因素","提高钛宝石质量的关键是提高其 Q 值"的理论分析结论 $^{[11]}$ 。 Q 值比 FOM 值更能代表质量。

需要指出的问题有两个。分析计算中需要内量子效率数据, 文献报导的差别较大, 连续激光 n=55% $\sim 75\%$, 脉冲激光 n=68% $\sim 86\%$ 。我们计算选用 65% , 可能偏低。n 影响 B

邬承就 钛宝石激光器的性能同元件参数的关系

值、斜率效率和输出的计算结果,精确设计计算时需注意。第二个问题是上述实验所用元件长度并不完全符合理论计算值,尚有改进余地。

Table Theoretical and experimental laser performences of Ti sapphire with different parameters

sam ple	concen	α_{514}	α_{820}	FOM	Q	L	output	power(W)	threshold(W)	
	wt%	cm^{-1}	cm^{-1}		$\mathrm{c}\mathrm{m}^{-1}$	cm	exper.	theor.	exper.	th eor.
1	0.1	2. 07	. 023	90	186	1.5	1.9	1.8	1.5	3.0
2	0. 1	2. 10	. 0021	1000	2100	1.5	3.5	3.0	0.75	1.0
3	0. 15	3. 19	. 0057	560	1786	1.0	2. 85	2. 8	0.8	1.0

Note. 1. The experimental results are from J. F. Pinto et al. [10]

2. The theoretical output power is the max imum in the pumping power 9.6 W condition.

四、结论

根据纵向泵浦固体激光器优化设计理论,计算了各种参数钛宝石的斜率效率、最大输出和 阈值,以及元件最佳长度和输出镜参数。结果与实验相符。方法和结果可作设计参考。

参考文献

- 1 Wu Ch J. SPIE, Vol. 1979, Laser and Optoelectronics, 1992; 240
- 2 Sanchez A, Strauss A J, Aggarwal R L et al. IEEE J Q E, 1988; 24(6): 995
- 3 Moulton P F. IEEE J Q E, 1985; QE-21(10): 1582
- 4 邬承就. 物理学报, 1995; 44(4): 552
- 5 Estable F, Mottay E, Salin F. Opt Lett, 1993; 18(9): 711
- 6 吴路生, 韦 丽, 周东方 et al. 中国激光, 1995; 22(3): 168
- 7 Rines G A, Moulton P F. Opt Lett, 1990; 15(8): 434
- 8 谢建平, 孙晓泉, 张运生 et al. 量子电子学, 1993; 10(1): 91
- 9 Moulton P F. J O S A(B), 1986; 3(1): 125
- 10 Pinto JF, Esterowitz L, Rosenblatt GH et al. IEEE JQ E, 1994; 30(11): 2612
- 11 邬承就.人工晶体学报, 1995; 24(2): 157

作者简介: 邬承就, 男, 1940 年2 月出生。研究员, 室主任。中国硅酸盐学会晶体生长和材料专业委员会委员。1981 年~1983 年在德国汉堡大学研究碘同位素分子超精细光谱。近十年来先后研究钛宝石激光器、Cr. LiSAF 激光器、Tm, Ho 24m 激光器。获国家和中科院多项奖。

收稿日期: 1995-05-29 收到修改稿日期: 1996-03-08