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1. Definition of fundamental mode thermally stable resonators

The definition of fundamental mode thermally stable resonators was given in the literature
[1]. With its necessary conditions being:
da/df=0 (1)
dvV/df=10 (2)
where « is the beam divergence angle, V is the mode volume and f is the thermal focal length.
On the premise that the beam wavefront is coincident with the curved surface of the resonator
mirror, (1) and (2) can be equivalent to
dw/df =0 (3)
where w is the spot radius on the output mirror. All discussions made in are based on (3), but
(3) as the definition of fundamental mode thermally stable resonators is conditional, i.e. coinci-
dence of the beam wavefront with the mirror surface. For ring resonators, resonators with Gaus-
sian reflectivity mirrors of conventional resonators with variable reflectivity mirrors, the beam
wavefront is not always coincident with the mirror surface and varies with the thermal focal
length, hence the problem of thermal stability of modes can not be simplified into that of spot ra-
dius w to be considered. Therefore, the result from [1] is only suited to simple stationary wave
resonators. Based on detailed considerations of thermal stability of the fundamental mode, we de-
fine
d(1/q)/df =0 (4)
as the stability condition of fundamental mode thermally stable resonators, where q is the complex
parameter of a Gaussian beam. In accordance with the definition, equation (4) can be resolved in-

to

dw/df =0 (5)
dR/df =0 (6)
where R is the curvature radius of the beam wavefront-at the output mirror surface. It is obvious
that, when the beam wavefront is coincident with the'mirror surface, R is constant, equation (6)
automatically holds. Therefore, fundamental mode thermally stable resonators defined by us in-
clude the situation, i.e. the problem of thermal stability of simple stationary wave resonators,
discussed in the literature [1].

In addition, our definition can be proved to be equivalent to that in [1]. In accordance with
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where definitions of all parameters are referred to [1]. Let us differentiate (7) with respect to f
dv/df = fi(w) « dw/df (8)
Obviously, when (5) holds, (2) also does. Suggest the complex parameter of a Gaussian beam at

the output mirror surface be
1/q = 1/R - iA/(7w?) (9
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In accordance with the law ABCD, after q pass through [0 1], its complex parameter is
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In accordance with the definition of a divergence angle in the far field:
: 1\? A )2
a = lim(w,/1) = w (E) ¥ (E) (11)

differentiation of (11) with respect to f leads to
da/df = f,(w,R) + dw/df + f3(w,R) - dR/df (12)
It is known from (12) that, when (5) holds and if (6) also does, (1) does. Therefore, the two
definitions are equivalent to each other.
In general, resonators can be divided into two groups, i.e. stable and unstable resonators.
The problem of thermal stability of unstable resonators had been discussed by us in literatures [2]
and [3] in detail. In literatures [4] and [5], we had proved that resonators with Gaussian reflec-
tivity mirrors ( GRM) could not realize unstable resonators, i. e. all eigen-modes in GRM

resonators are Gaussian beams. Therefore, the situation in which eigen modes in resonators are

Gaussian beam is only analyzed in the paper. M, M.
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2. Modes in GRM resonators v i . '
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As shown in Fig. 1, the active medium is “‘ / \ !
made equivalent to a thin lens, and optics on its P f

both sides are described by
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respectively. The single-pass propagation matrix in the gesonators is

I

Fig.1 GRM resonator with thermal lens

_ [alaz + bycr — arby/f  azb + byd; - blb2/fil (14)
ajcy + cidy —ayda/f brey + didy — byda/ f
With the mirror M, as reference, the round-trip propagation matrix is
A By | 1 0] rd & 1 0)fa &
[C D]= |- 2/py — iA/(na?) J [c a] [—Z/pz 1] [c d]
i 1 0| |A, B,
T |~ 2/p1 - id/(na?) J [c, DJ
i A, B,
= (15)
IC, - 2A,/p, — iAA,/(ne*) D, - 2B,/p, - MB,/(MZJ
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where
2
{A, B,} ad+bc—2pizb 2bd—3p’—’2— "
¢ D 2ac—2—a‘2' ad + be - 228
P2 P2
obviously,
A, =D,
AD, - BC, =1 (17)
In accordance with the self-consistent condition,
1/q=(C+ D/q)/(A + B/q) (18)
we order 1/¢=1/R - iA/(xw?) (19)
and substitute (15) and (19) into (18) and separate real part of (18), obtaining the imaginary
part
20%(1/R +1/p,) = w*(1/R + A,/B,) (20)
(1/R +1/p))* - (1/p, - A,/B,)* + (A/7w)*(1/0* - 1/w?) + 1/B,? = (21)

The spot radius w of a Gaussian beam and the curvature radius R of a wave front can be derived
from (20) and (21).

3. Thermal stability conditions of GRM resonators

In accordance with (5) and (6), derivation of (20) and (21) with respect to f results in

d(B,/A)/df =0 (22)
2(1/p, - A,/B,)d(A,/B,)/df + d(1/B,*)/df = 0 (23)
Arrangement of (22) and (23) has
dA,/df=0 (24)
dB,/df = (25)
In accordance with (14) and (16), solving (24) and(25) can have
Gyda/df + adG,/df=0 (26)
G,db/df + bdG,/df= 0 27)
(27) X a — (26) X b has (where G, =d — b/p;)
(adb/df - bda/df)G, =0 (28)
that is, thermal stability conditions of GRM resonators are
G, =0 (29)
or adb/df - bda/df =0 (30)
Substitution of (14) into (30) will have
(ayd, - b )b’ =0 (31)
Beacause ad; —bic;=1 (32)

62=10 (33)






