电子束泵浦的 KrF 激光介质 的动力学过程分析

杨之昌

(复旦大学物理系,上海,200433)

吴选红

(上海机电工程研究所,上海)

摘要:通过对由 Ar, Kr, F:组成的 KrF 准分子激光介质在电子束激励条件下激发态的形成及 驰豫等动力学过程进行研究,计算得到各种激发态的泵浦及其荧光光谱。 关键词:泵浦率 荧光光谱

Analysis of dynamic process in e-pumped KrF laser medium

Yang Zhichang

(Department of Physics, Fudan University)

Wu Xuanhong

(Shanghai Institute of Electromechanic Engineering)

Abstract: Based on the study of the dynamic process of excited states and relaxation of KrF molecular laser medium composed of Ar, Kr and F_2 , under the condition of excited with electronic beam, the pumping rates and the fluorescent spectrums have been obtained.

Key words: pumping rate fluorescence spectrum

一、引言

电子束泵浦的 KrF 准分子激光具有很高的小信号增益和能量转换效率,介质的饱和光强 非常高,可达 MW/cm² 量级,激光单次脉冲能量和平均功率都很高,具有高能量、高功率、高重 复频率和波长可调的特点,在高功率激光器的研究、激光核聚变、半导体和材料加工、医学等许 多领域有广泛的应用^[1,2]。

(4)

本文通过参考有关文献中电子束泵浦的由 Ar,Kr 和 F2 组成的 KrF 准分子激光介质之间 的化学反应^[2],得到各种激发态的碰撞驰豫时间,建立了激发态泵浦率的数学模型,并讨论了 最佳泵浦条件,其中旁侧光谱的计算结果同有关实验结果基本相符^[3]。

二、激发态的泵浦率数学模型的建立

由 Ar, Kr 和 F₂ 组成的 KrF 激光介质在横向脉冲高能电子束(450keV,75kA,50ns)激励 下,将产生 Kr^{*}, Kr^{**}, Ar^{*}, Ar^{**}, KrF^{*}, ArF^{*}, Ar², Kr², ArKr^{*}, Ar₂F^{*}, Kr₂F^{*}及 ArKrF^{*}等 激发态,主要发光波长有 248nm, 193nm, 146nm, 126nm, 415nm, 635nm 和 276nm 等^[2,3,4], 在 低气压下 KrF^{*}等激发态的碰撞产生和驰豫过程如下^[2]:

$$\vec{e} + Kr(Ar) \rightarrow Kr^{*}(Kr^{**}, Kr^{+}, Ar^{*}, Ar^{**}, Ar^{-}) + \vec{e}$$
(1)

$$Kr^{\bullet}(Kr^{\bullet}, Ar^{\bullet}, Ar^{\bullet}) + F_2 \rightarrow KrF^{\bullet}(ArF^{\bullet}) + F$$
(2)

$$Kr^{*}(Kr^{**}, Ar^{*}, Ar^{**}) + 2Kr(Ar) \rightarrow Kr_{2}^{*}(Ar_{2}^{*}, ArKr^{*}) + Kr(Ar)$$
(3)

$$ArF^{\bullet} + Kr \rightarrow KrF^{\bullet} + Ar$$

$$KrF^{*}(ArF^{*}) + 2Kr(Ar) \rightarrow Kr_{2}F^{*}(Ar_{2}F^{*},ArKrF^{*}) + Kr(Ar)$$
(5)

方程式(1)描述了电子束的动力学过程,单个电子单位时间内传递给介质的能量为:

$$\Delta = \sum k_i N_i \Delta_i$$

 k_i , N_i , Δ_i 分别为(1)式中的反应速度、Kr 或 Ar 的数密度和每次反应电子的能损, 对于束流 J = 75kA, 初能为 $E_0 = 450$ keV, $\tau_0 = 50$ ns 的激励源, 可给出单个电子从 E_0 将为低能所需的时间 τ_1 为:

$$\tau_1 = \frac{E_0}{\Delta} = \frac{4.5 \times 10^{13}}{\left[(4.1X_a + 4.8X_k) \times N_a \right]}$$
(6)

由此得到电子束的数密度函数是:

$$N_{r}(t) = \begin{cases} N_{r} \times t & t \leq (\tau_{0}, \tau_{1})_{\min} \\ N_{r}(\tau_{0}, \tau_{1})_{\min} & \frac{(\tau_{0} + \tau_{1} - t)}{(\tau_{0} + \tau_{1} - (\tau_{0}, \tau_{1}))_{\max}} \\ 0 & t > \tau_{0} + \tau_{1} \end{cases}$$
(7)

式中, $N_r = J/V_r$, $r_0 + r_1$ 是反应的截止时间, X_r, X_r, X_r 分别是 Ar, Kr, F_2 的数密度分量,考虑 到激发态的形成及碰撞、振动和受激辐射驰豫过程,激发态的态数 N(t)的方程是:

$$\frac{\mathrm{d}N(t)}{\mathrm{d}t} = \frac{R(t) - N(t)}{\tau_{\mathrm{D}}} - \frac{N(t)}{\tau_{\mathrm{s}}} - \frac{N(t)}{\tau_{\mathrm{s}}} \tag{8}$$

式中,R'(t)是碰撞产生激发态的速率,to,t,t。分别是碰撞、振动和受激辐射(包括自发辐射) 的特征时间,令 R(t)是激发态的泵浦率,则有:

$$R(t) = \frac{dX(t)}{dt} = R'(t) - CX(t)$$
(9)

X(t)是化学反应得到的态数, $C = \frac{1}{r_0}$, 得到化学反应产生的激发态的泵浦率是:

$$R(t) = R'(t) - Ce^{-t} \int_0^t R'(t)e^{t} dt$$
 (10)

由(7),(9)式的性质得到当 $t=t_m=(\tau_0,\tau_1)_{min}$ 时,R(t)最大,并且平均泵浦率 $R \approx R_{max} = R$ (t_m),下面由文献[2]给出的化学反应方程式及反应速率,推导 $t \leq t_m$ 时各种激发态的泵浦率 $R_i(t)$ 。

1. 由(10)式得出 Ar', Ar', Kr', Kr', 等激发态的态数密度函数是:

Ar :
$$X_{1}(t) = (k_{1} + k_{2}) \left[\frac{t}{C_{1}} + \frac{1 - e^{-C_{1}t}}{C_{1}^{2}} \right]$$

Ar : $X_{2}(t) = k_{2} \left[\frac{t}{C_{2}} + \frac{1 - e^{-C_{2}t}}{C_{2}^{2}} \right]$
Kr : $X_{4}(t) = (k_{4} + k_{5}) \left[\frac{t}{C_{4}} + \frac{1 - e^{-C_{4}t}}{C_{4}^{2}} \right]$
Kr : $X_{5}(t) = k_{5} \left[\frac{t}{C_{5}} + \frac{1 - e^{-C_{5}t}}{C_{5}^{2}} \right]$ (11)

式中, $k_1 = 2.7 \times 10^{-10} X_* N_0 N_*, k_2 = 7.4 \times 10^{-10} X_* N_0 N_*, k_4 = 4.7 \times 10^{-10} X_* N_0 N_*, k_5 = 1.2 \times 10^{-9} X_* N_0 N_*, N_0$ 是介质的数密度, $N_0 = P/kT$

$$C_{1} = 1.1 \times 10^{-9} X_{f} N_{0} + 6.2 \times 10^{-12} X_{k} N_{0} + 10^{-32} N_{0}^{2} (X_{a} X_{k} + 1.12 X_{a}^{2})$$

$$C_{2} = 10^{-10} N_{0} (7.8 X_{f} + X_{a})$$

$$C_{4} = 8.1 \times 10^{-10} X_{f} N_{0} + 10^{-32} N_{0}^{2} (2.7 X_{a} X_{k} + X_{a}^{2})$$

$$C_{5} = 10^{-10} N_{0} (8.1 X_{f} + X_{a})$$

在低气压下, $C_2 \gg C_1$, $C_s \gg C_s$,导致 $X_1(t) \gg X_2(t)$, $X_4(t) \gg X_5(t)$,可以忽略 Kr··和 Ar·· 对 KrF··等激发态的贡献,下面的计算中只考虑 Kr·和 Ar·的贡献。

2. 由 Kr[•]和 Ar[•]等与 Ar, Kr, F₂ 反应方程式可导出 KrF[•]等的产生率 R^{*}(r)

KrF[•]:
$$R_{7}'(t) = 8.1 \times 10^{-10} X_{f} N_{0} X_{4}(t) + 1.6 \times 10^{-9} X_{4} N_{0} X_{8}(t)$$

ArF*:
$$R_{8}(t) = 7.5 \times 10^{-10} X_{f} N_{0}(k_{1} + k_{2}) f_{1.8}$$

ArKr*: $R_{9}(t) = 10^{-32} N_{0}^{2} [X_{a} X_{4}(k_{1} + k_{2}) f_{1.9} + X_{a}^{2}(k_{4} + k_{5}) f_{4.9}]$
Kr₂: $R_{10}(t) = 2.7 \times 10^{-32} X_{a} X_{b} N_{0}^{2} (k_{4} + k_{5}) f_{4.10}$
Ar₂: $R_{11}(t) = 1.14 \times 10^{-32} (N_{0} X_{a})^{2} (k_{1} + k_{2}) f_{1.11}$

$$\begin{aligned}
\mathbf{Kr_{2}F^{*}:} \quad R_{12}(t) &= 6.6 \times 10^{-31} (X_{\bullet}X_{\bullet} + X_{\bullet}^{2}) N_{0}^{2} [8.1 \times 10^{-10} X_{f} N_{0} \\ & \times (k_{\bullet} + k_{5}) g_{\bullet,7,12} + 1.6 \times 7.5 \times 10^{-19} X_{\bullet} X_{f} N_{0}^{2} \\ & \times (k_{1} + k_{2}) g_{1,7,12} / C_{8}] + 3 \times 10^{-10} X_{f} N_{0} \\ & \times 2.7 \times 10^{-32} X_{\bullet} X_{\bullet} N_{0}^{2} (k_{\bullet} + k_{5}) g_{\bullet,10,12} \\ \mathbf{Ar_{2}F^{*}:} \quad R_{13}(t) &= 2.5 \times 10^{-10} X_{f} N_{0} \times 1.14 \times 10^{-32} \\ & \times (N_{0} X_{\bullet})^{2} (k_{1} + k_{2}) g_{1,11,13} + 4 \times 10^{-31} (N_{0} X_{\bullet})^{2} \\ & \times 7.5 \times 10^{-10} X_{f} N_{0} (k_{1} + k_{2}) g_{1,8,13} \\ \mathbf{ArKrF^{*}:} \quad R_{14}(t) &= 10^{-10} X_{f} N_{0} \times 10^{-32} N_{0}^{2} [X_{\bullet} X_{\bullet} (k_{1} + k_{2}) g_{1,9,14} \\ & + X_{\bullet}^{2} (k_{4} + k_{5}) g_{+,9,14}] + 7 \times 10^{-31} (N_{0} X_{\bullet})^{2} \\ & \times [8.1 \times 10^{-10} X_{f} N_{0} (k_{4} + k_{5}) g_{+,7,14} \\ & + 1.6 \times 7.5 \times 10^{-19} X_{\bullet} X_{f} N_{0}^{2} (k_{1} + k_{2}) g_{1,7,14} / C_{8}] \end{aligned}$$
(13)

由反应方程式得出式中各激发态碰撞驰豫时间的倒数分别是:

$$C_{7} = 10^{-12}N_{6}(2X_{4} + 1.8X_{4} + 780X_{f}) + 10^{-31}N_{6}^{2}(0.7X_{4}^{2} + 6.5X_{4}X_{4} + 6.7X_{4}^{2})$$

$$C_{8} = 10^{-9}N_{6}(1.6X_{4} + 1.9X_{f} + 0.009X_{4}) + 4 \times 10^{-31}N_{6}^{2}X_{4}^{2}$$

$$C_{9} = 10^{-10}N_{6}(9X_{f} + X_{4} + X_{4})$$

$$C_{10} = 10^{-10}N_{6}(6X_{f} + 3X_{4} + X_{4})$$

$$C_{11} = 10^{-10}N_{6}(6.1X_{f} + 4X_{4} + X_{4})$$

$$C_{12} = 10^{-11}N_{6}(15X_{f} + X_{4} + X_{4})$$

$$C_{13} = 10^{-10}N_{6}(2X_{f} + X_{4} + 2X_{4})$$

$$f_{i,j} = \frac{1 - e^{-C_{f}}}{C_{i}C_{j}} + \frac{e^{-C_{f}} - e^{-C_{f}}}{C_{i}(C_{j} - C_{i})}$$

$$\equiv iji_{i,j,k} = \frac{1 - e^{-C_{f}}}{C_{i}C_{j}C_{4}} + \frac{e^{-C_{f}} - e^{-C_{f}}}{C_{i}(C_{j} - C_{i})(C_{k} - C_{i})} + \frac{e^{-C_{f}} - e^{-C_{f}}}{C_{i}(C_{j} - C_{j})(C_{k} - C_{i})}$$

F. Kannari 等人给出了脉冲电子束泵浦的 KrF 激光装置^{15]},其结构是由激发室、电子枪和 低压飘移区三部分组成,电子束由栅阴极产生,由栅阴极与阳极之间的 450kV 的电压加速,电 子束流 J=75kA,电子束脉宽 r_0 =50ns,激发室是由 40cm×2cm×2cm 的空间构成,介质气体 Ar,Kr,F₂ 的温度 T=300K,则有电子束的能量 E_0 =450keV, N_r =2.94×10²¹cm⁻³,将这些条 件代入(13)式中,得出各种激发态在 r_0 =50ns 时相对应的最佳值 P,k_r,k_a,k_f 和平均泵浦率的 极大值 R_{max} 及在 P=1atm 和 P=0.7atm,Ar/Kr/F₂=89.8%/10%/0.2%时泵浦率 R(t)的上 升时间 r_i 。

表中 KrF[•]与 Kr²等激发态的最佳参数中含有 Ar,这是由于 Ar 的加入有利于提高电子 能量的利用率,并且由于 ArF[•]与 Kr 有较大的反应速率 1.6×10^{-9} cm⁻³/s,生成 KrF[•],使 KrF[•]的态数在 Ar 含量达到 90%左右时有较大的峰值。ArKr[•],ArF[•],Ar₂F[•],ArKrF[•]等激发 态各组成成分的最佳含量主要取决于它们与 Ar,Kr,F²的碰撞驰豫的反应速率,激发态与某 种介质的反应速率越高,这种介质的含量就越小。由于 F₂ 很容易与各种激发态发生反应,因此 其含量必须控制在 1%以下,以保证激发态有较高的泵浦率。对于 ArKr^{*},Kr^{*},Ar^{*},Kr₂F^{*}, Ar₂F^{*}等激发态,主要是由三体碰撞而产生的,压强越高,泵浦率越大,表中的压强是在 R =90% R_{max} 时的值。

Table The optimum pumping condition

Р	Ar %	Kr %	F2 %	R _{max} cm ⁻³ /s	$ au_i$	
atm					0. 7atm	latm
0.66	87.2	12. 48	5 . 32	86.5 N.	69	45
0.57	99. 68	0	0.32	28.9 N.	47	32
4.3	67.0	33.0	0	2. 91 N.	70	46
5.1	10.0	90. 0	0	8. 19 N.	77	50
4.0	100	0	0	10.2 N.	47	32
4.3	71.35	28.0	0.65	52.9 N.	81	51
4.9	99. 42	0	0.58	2. 00 N.	47	32
2.5	94.0	5.72	0. 28	72.1 N.	72	47
	P atm 0.66 0.57 4.3 5.1 4.0 4.3 4.9 2.5	P Ar atm % 0.66 87.2 0.57 99.68 4.3 67.0 5.1 10.0 4.0 100 4.3 71.35 4.9 99.42 2.5 94.0	P Ar Kr atm % % 0.66 87.2 12.48 0.57 99.68 0 4.3 67.0 33.0 5.1 10.0 90.0 4.0 100 0 4.3 71.35 28.0 4.9 99.42 0 2.5 94.0 5.72	P Ar Kr F2 atm % % % 0.66 87.2 12.48 0.32 0.57 99.68 0 0.32 4.3 67.0 33.0 0 5.1 10.0 90.0 0 4.3 71.35 28.0 0.65 4.9 99.42 0 0.58 2.5 94.0 5.72 0.28	P Ar Kr F_2 R_{min} atm % % % cm ⁻³ /s 0.66 87.2 12.48 \mathfrak{V} . 32 86.5 N. 0.57 99.68 0 0.32 28.9 N. 4.3 67.0 33.0 0 2.91 N. 5.1 10.0 90.0 0 8.19 N. 4.3 71.35 28.0 0.65 52.9 N. 4.9 99.42 0 0.58 2.00 N. 2.5 94.0 5.72 0.28 72.1 N.	P Ar Kr F_2 R_{max} T atm % % % cm ⁻³ /s 0.7atm 0.66 87.2 12.48 $\mathfrak{V}.32$ 86.5 N. 69 0.57 99.68 0 0.32 28.9 N. 47 4.3 67.0 33.0 0 2.91 N. 70 5.1 10.0 90.0 0 8.19 N. 77 4.0 100 0 0 10.2 N. 47 4.3 71.35 28.0 0.65 52.9 N. 81 4.9 99.42 0 0.58 2.00 N. 47 2.5 94.0 5.72 0.28 72.1 N. 72

表中 r_i 是每种激发态得到充分激发所需的时间($R=0.9R_{max}$ 时的 r 值),充分激发的条件 是 $r_0 \gg r_i$,在 $r_0 \ge r_i$ 的时间内 R(t)已饱和,碰撞产生与碰撞驰豫达到平衡,饱和宽度 $\Delta t = r_i$ r_i ,在 Δt 时间内有可能产生激光输出,荧光脉冲宽度等于 Δt 。随着 P 减小, r_0^{-1} 减小, N_r 减小, 电子能量传递速度将降低,R(t)达到饱和的时间 r_i 将随之增大,这可从 $f_{i,1}$ 和 $g_{i,1}$ 的表达式中 看出。在选择 KrF 激光器泵浦电子束脉宽时,可选择 $r_0 \ge r_{KrF}$,许多理论和实验都选择 $r_0 = 50ns$,P = 1atm, $Ar/Kr/F_2 = 89$.8%/10%/0.2%这一接近最佳泵浦率条件的参数。

四、荧光光谱计算

由准分子激发态稳态定态理论,得出 各种激发态辐射光子的强度是:

 $I_{i} = R_{i}h\nu_{i}\left(1 - \frac{\theta_{o}}{1 + \tau_{v}/\tau_{si}}\right)$ $\times \frac{V}{4\pi S}$

式中,R,是平均泵浦率,r.,是自发辐射特征 时间,θ。是基态的玻尔兹曼因子,取 6。= 0.89,V 是激发室体积,S 是激发室表面 积,rv 是振动驰豫特征时间,其表达式 是^[2]:

 $\tau_V^{-1} = (4 \times 10^{-11} X_k)$

 $+ 5 \times 10^{-11} X_{\bullet} N_{\bullet}$ (15)

Fig. Fluorescent spectrum

附图是在 Ar/Kr/F₂=89.8%/10%/0.2%, E_{s} =450keV, J=75kA, V=40cm×2cm×2cm 的条件下, P分别是 0.5, 1, 2, 4atm 时计算得到的荧光光谱(取 $\Delta\lambda$ =14nm)^[2], 同 J. A. Mangano 等人的结果相符^[3]。除 248nm 处有一很强的辐射峰外,在 190~200nm, 270~

(14)

127

280nm,400~420nm 处有较强的辐射峰。在压强较大时,荧光光谱比较复杂,248nm 的辐射下降,其它辐射峰增加;在压强较小时,荧光光谱比较单一,主要是 248nm 的辐射;在 P=1atm 时,248nm 的辐射峰最强。

考

文 献

瀲

2 Kannari F, Obara M, Fujioka T. J A P, 1985;57(9):4309

- 3 Mongano J A, Jacob J H, Kokni M et al. A P L, 1977;31(1);26
- 4 Wadt W R, Hay P J. A P L, 1977; 30(11):573
- 5 Kannari F, Shaw M J, O' neill F. J A P, 1987;61(2):476

作者简介:杨之昌,男,1936年8月出生。教授、长期从事光学测量、激光参数测量和常用激光器件的研制等研究工作。 吴选红,男,1966年12月出生。工程师。1991年毕业于复旦大学激光物理专业,现从事光电控制方面的工作。

收稿日期:1993-02-01 收到修改稿日期:1993-11-22

•简 讯•

新颖聚合物可实现宽带宽电光调制。

美国洛杉矶的南加州大学研制成一种到目前为止还未命名的新聚合物,该聚合物有高的 光学非线性特性,可用来制作典型的高达40GHz带宽的电光调制器。科学家们宣称,性能达到 100GHz将可能不会遇到严重问题。相比之下,LiNbO,调制器的带宽只能达到10GHz。

在波士顿召开的'1993 材料研究学会会议报告中,许承正(译音)及其合作者叙述了他们 研制的合成11-级聚合-合成系统概况,双端为可互联,这样产生的聚合物就具有很高的非线性 光学特性,并在超过120℃温度时可以长时间稳定使用。许报告说,该聚合物可以制作在光学 薄膜上,能抗淀积到金属电极上所需的高温度,能用来制作隐埋-沟道波导并引导到光纤中。

虽然该聚合物看来适合商业应用,许告诫说需要对其进行可使用环境的寿命试验,继续探 索该聚合物集成到半导体器件上的可行性。

译自 CF World, 1994; 30(1):13 中尧 译 马理 校