光纤干涉法测量液体折射率随温度变化率

里佐威	张	伟	裴	カ		高淑琴	吴晓俐	
(吉林大)	学,	长春,	130)23)	(吉林工	业大学,	长春,	130025)

摘要:待测液体充入空心石英光纤中,构成多模光纤。采用双光纤干涉方法, 测量了液体折射率随温度变化率,获得了较高的测量精度。

Measurement of temperature coefficient of liquid refractive index using optical fiber interference

Li Zouwei, Zhang Wei, Pei Li Gao Shuqiu, Wu Xiaoli (Jilin University) (Jilin University of Technology)

Abstract: In this paper, a method for measuring the temperature coefficient of liquid refractive index by means of the optical fiber interference is introduced. In the experiment study, the liquid-core optical fiber is used. The study results show the high measurement accuracy.

(-) 引 音

空心石英光纤充入透明度高的液体,构成液芯光纤。液芯光纤内的液体物理性质均匀, 无内应力。因而,液芯光纤保偏性能好^[1],模变换系数小,结构为8000个模式的液芯光纤 可以传输单模(HE₁₁)超过几百米^[2]。在干涉型光纤传感中,多模液芯光纤也能产生**清**晰 干涉条纹。我们曾对多模液芯光纤干涉进行了研究^[3]。最近,我们用多模液芯光纤干涉方 法,测量了几种液体的折射率n随温度T的变化率dn/dT。测量中,待测液体(其折射率n要 大于石英包皮的折射率n。)充入空心石英光纤内,构成液芯光纤。本文介绍测量原理、实验 装置和测量结果。

二、测量上原理

单色光沿一根光纤传输,总相位取决于光纤的三个特性。即光纤长度、折射 率 及 其 分 布、光纤的横向几何尺寸。传输光的相位可以因为压力、温度、电磁场等影响而变化。只考 虑温度变化引起光纤折射率和几何尺寸发生变化时,总相位9变化Δ9为¹¹;

$$\Delta \varphi = \frac{2\pi nL}{\lambda} \left(\alpha + \partial n / \partial T \right) \Delta T \tag{1}$$

式中,L是光纤长度, λ 为光在真空中的波长, α 为光纤的热膨胀系数, $\partial n/\partial T$ 为光纤芯 折射

率随温度的变化率。由于光纤芯材料液体折射率与等效折射率在这里相差很小,其温度变化 率的差异更小。本文将二者看成相等。对液芯光纤,芯液体折射率随温度变化率很大,相比 之下,石英热膨胀系数α(10⁻⁶/℃~10⁻⁷/℃)可以忽略。(1)式写为:

$$\Delta \varphi = -\frac{2\pi nL}{\lambda} \cdot \frac{\partial n}{\partial T} \cdot \Delta T \tag{2}$$

根据(2)式,我们只要测出温度变化 ΔT 时的相位变化 $\Delta \varphi$,即可以测量出液体折射率n随温度T的变化率 $\partial n/\partial T$ 。

光程延迟时间为t的两光束干涉系统,干涉条纹强度可表示为:

$$I(t) = 1 + \cos 2\pi m i^{[6]}$$
(3)

m可为非整数, m = v • t, 表示干涉条纹级数,其变化可由光频率v,也可以由延迟时间t引起。 t可以是两路相干光的物理长度、折射率、温度等变化引起的。在入射光频率v固定时, dt = $\frac{1}{v}$ dm。即光程延迟变化dt引起干涉条纹变化dm。可以通过测量干涉条纹变化dm, 计算出只 有温度变化引起的两束光相位变化Δφ (2π • dm)。我们用两根液芯光纤构成双光路不等臂 干涉仪。测量出室温下 (18℃)液体折射率n随温度T的变化率δn/δT。

三、实验装置及实验步骤

选用两根液芯光纤,内半径a=32.0µm。一根长1.860m为敏感光纤,其中1.380m为受 温度影响的长度。另一根长为0.480m为参考光纤,为补偿环境对实验的影响,在盛水容器外

Fig.1 The schematic of experiment set-up

面部分敏感光纤的长度与参考光纤长度相等,并处于相同条件下。两光纤都放在绝热箱中。如图1所示。敏感光纤放在盛有一定质量水的玻璃杯中,水中放一个电阻值为R的电阻丝,两端与箱外直流电源相连接。用放大镜观察条纹及其移动。调节激光器,使入射光束与两光纤轴线成0°角(平行)。最好使两光纤传输的光程差为激光器腔长偶数倍,以获得最清晰的干

涉条纹¹⁵¹。待条纹稳定后,给电阻丝通电以改变水的温度。通入一定强度的电流, 经一定时间的条纹移动时,记录下通电时间τ和电流强度*I*(动态测量)记录不同时间引起的条纹移动数ΔN。根据焦耳定律计算出温度变化Δ**T。**见附表(结果为5次测量平均值)。

四、实验给果

我们将待测 样 品 氯 苯 (折射率为n=1.520) 充入空心石英光纤内(石英包皮折射率为 n_c=1.486),构成液芯光纤。测量出电阻丝R的电阻数值(15.0Ω)和水、玻璃杯、电阻丝 的质量(m_w, m_g和m_E),m_w=1258.0g,m =198.5g,m_E=5.6g。查出相应比热容C_w=4180 J/kg・K,C_i=670J/kg・K,C_E=450J/kg・K和热功当量K=4180J/kg・K。根据实验记 录的通电时间τ和电流强度I(0.400A)。计算出水温度变化ΔT,ΔT = $\int_{0}^{\tau} KI^2Rdt/(C_m_w + t_w)$ 激光龙技术

$C_{3}m_{1}+C_{E}m$	E)见阳	「表。		. •								
•			Tab	le E:	xperimer	ntal res	ults					
<u>و نیا جب بر منبع میں اور اور میں منبع</u>							· · · ·			·		
t (s)	10.0	20.0	30.0	40.0	50.0	60.0	70.0	80.0	90.0	1 0 0.0	110.0	120.0
$\Delta T imes 10^{-3}$ °C	4.47	8.94	13.4	17.8	22.5	26.8	31,3	35.8	40.7	45.4	50,1	54.8
ΔN (strip)	8.0	16.4	24.0	32.0	40.2	49.0	56.2	64.0	71.8	81.4	90.6	99.2
					· · · · · · · · · ·		···· ··	·····	•· •	• •••	· · · · · · · · · · · · ·	

由附表,用最小二乘法拟合 ΔN - ΔT 直线, (图2), 求具斜率

 $k' = (\Delta \overline{T}_i \cdot \Delta \overline{N}_i - \overline{\Delta T}_i \cdot \overline{\Delta N}_i)/(\Delta \overline{N}_i^2 - \Delta \overline{N}_i^2)^{16}$; $k' = 5.53 \times 10^{-4}$ ℃。即 $\partial T/\partial N = 5.53 \times 10^{-4}$ ℃。相干光源He-Ne激光器输出波长 $\lambda = 6.328 \times 10^{-7}$ m。由(2)式计算 出 $|\partial n/\partial T| = |\lambda/(nL) \cdot \partial N/\partial T| = 5.46 \times 10^{-4}$ ℃。我们还用苯、溴苯做了实验。测得数据分别 为5.36×10⁻⁴/℃和5.21×10⁻⁴/℃。

液体折射率随温度变化的测量是一种较困 难的工作。我们采用光针子涉方法进行测量,以 光波相位变化计算折射关随温度变化。由(1) 式、(2)式看出,相位变化量与光纤长度成 正比。由于敏感光纤可以很长,较大的两光 纤长度差保证了测量的高精度。测量中系统的 良好绝热水的均匀加热以及如上所述的补偿方 法,使实验免受外界环境干扰。实验中电流强 度的稳定是重要的。采用高质量稳压源或稳流 源可以保证电流的稳定。

perature variation and the shifting number of interference fringes (2000) 次实验,都获得了较高精度的结果。经分析和按误差传递公式进行计算,误差为0.2%~5%。 重复性较好(为三位有效数字), 些文献引用的结果¹⁷误差为2%~20%(二位有效数字)。

论

多模液芯光纤干涉方法,可以测量液体折射率随温度的变化率。实验中待测液体折射率 要大于液芯光纤石英包皮的折射率。该方法测量精度较高。适当增加敏感光纤长度,采用精 密电子仪器测量,测量精度还将有很大提高。

五、结

参考文献

[1] Papp A, Arms H. Appl Opt, 1977; 16 (15): 1315
[2] Gambling W A. Appl Opt, 1975; 14 (7): 1537

【3】 里佐或,韩玉华,侯兰田 et al. 光学学报,1)3) 1)(1): 34~37

(4) Shaw B.C. Optical fiber sensing and signal processing. Lordon UK 103h Charp 7, 90

(5) Roychoudhuri C. Appl Opt, 1930; 19 (12): 1903~1905

〔6〕 李锡培.实验数据的数学处理.北京:科学出版社, 1980: 121

[7] Storne J. J O S A, 1972; 62(3): 327

作者简介: 里佐威, 男, 1945年3月出生。副教授。现从事红外、光轩技术专业研究工作。

收稿日期: 1992年6月29日。