一种新型的正交棱镜望远镜激光共振腔

陈德章 张承铨 卢亚雄 (西南技术物理研究所,成都) (电子科技大学,成都)

摘要:本 文描述了正交屋脊棱镜-复合全内反射棱镜望远镜腔的特性。实 验 测 得在15pps重复频率下激光输出峰值功率1.3MW,光束远场发散角为0.6mrad,敏 感方向最大失调容限角约为1mrad。

A new-type telescopic resonator with cross prisms

Chen Dezhang, Zhang Chengquan

(Southwest Institute of Technical Physics)

Lu Yaxiong

(University of Electronic Science and Technology of China)

Abstract. This paper emphasizes the properties of a new type telescopic resonator with a porro prisms cross with a compound total internal reflection prisms. The experiments show that the peak output power of the laser is 1.3 MW at the pulse rate of 15 pps, the far-field divergency angle is 0.6 mrad. The biggest misalignment tolerance angle is approximately 1 mrad in sensitive orientation.

由于军用激光目标指示器使用环境恶劣,一般要求具有高功率Q开关输出、小的 远场发 散角和抗失调稳定性。针对这些要求,我们设计了一种采用屋脊棱镜和复合全内反射棱镜正 交的望远镜共振腔,如图1所示。图中,P₂为屋脊棱镜;P₁为复合全内反射棱镜;S为Nd:

宫

图1 共振腔光路图

YAG棒, F为介质偏振片;R为LiNbO₃晶体, TL为可调焦 望 远 镜。腔参数的 选 择 为 : 1.屋脊棱镜的屋脊线与偏振片透光方向的夹角 取近似45°; 2.复合全内反射棱镜的尖棱GH 在 Δ EFH面中成的象HG'(见图2)与屋脊 线 的夹角近似为 $\pi/2$,但不等于 $\pi/2$,以 π 为 单位

取无理数, 3. HG'与LiNbOs晶体快慢轴的夹角为π/4。

二、共振腔特性分析

1. 零偏压封锁特性

光在复合全内反射棱镜P₁中的作用过程如图2所示¹¹,入射光的S分量和P分量 在 棱镜 内转换次数相同,其过程分别为S→P→P→S和P→S→S→P,S分量和P分量 全 反 射 产生 的相移相同¹²,即相对相 移δ为零,但由于棱镜的空间反转作用引入了附加相移π。所以, P₁棱镜对入射光两分量的总相移为π。由于P₁棱镜做Q开关耦合棱镜,从偏振知识分析知,开 关晶体上无偏压时,返回偏振器处的线偏振光不能通过偏振器,腔处于封锁状态。当晶体两极 加上四分之一波电压,返回偏振器处的线偏振光能顺利的透过,腔处于开通状态。所以,无需 采取任何预偏置措施,腔具有零偏压封锁特性,电光Q开关巨脉冲工作时,不需封锁高压源。

2。等效输出耦合反射率R

设偏振片通光方向水平,并忽略棒的双折射。则R可由偏振片和P₂棱镜的琼斯矩阵M_F, M_{P2}确定^[3],即

$$M_{I} = M_{F}M_{F2}M_{F}, R = M_{1} \cdot M_{1}*$$

$$M_{F2} = \begin{bmatrix} a & jb \\ jb & a^{*} \end{bmatrix}$$

$$M_{F} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$a = \cos(p/2) + j\sin(p/2)\cos(2\beta)$$

$$b = \sin(p/2)\sin(2\beta)$$

$$p = \pi + 4\tan^{-1}(\cos(\sqrt{\sin^{2}i - n^{-2}}/\sin^{2}i))$$

式中,i为入射角,n为 P_2 棱镜的折射率, β 为屋脊线同偏振片通光方向的夹 角,P为 P_2 棱 镜的相移。

$$\therefore M_{1} = M_{F}M_{F2}M_{F} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a & jb \\ ib & a^{*} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$$
$$R = M_{1} \cdot M_{1}^{*} = \cos^{2}(p/2) + \sin^{2}(p/2)\cos^{2}2\beta$$

可见, R与p和β有关, R-β曲线如 图3所示。

3. 消光比

消光比是指偏振片的最大透射率与最小透射率之比。它可由偏振片、Q开关晶体和P₄棱

$$M_{2} = M_{F}M_{Q}M_{P1}M_{Q}M_{P}$$

式中,M_Q, M_{P1}为LiNbO₃和P₁棱镜的琼斯矩阵, 分别为:

$$M_{P1} = \begin{pmatrix} j\cos^{2}\beta_{1} & j\sin^{2}\beta_{1} \\ j\sin^{2}\beta_{1} & -j\cos^{2}\beta_{1} \end{pmatrix}$$

$$M_{Q} = \begin{pmatrix} \cos(\delta_{q}/2) + j\sin(\delta_{q}/2)\cos 2p_{q} & j\sin(\delta_{q}/2)\sin 2p_{q} \\ j\sin(\delta_{q}/2)\sin 2p_{q} & \cos(\delta_{q}/2) - j\sin(\delta_{q}/2)\cos 2p_{q} \end{pmatrix}$$

$$\delta_{q} = V_{Q} \begin{bmatrix} \frac{2n}{A} n_{Q}^{3}r_{22}d/a \end{bmatrix}$$

式中, $\beta_1 \neq P_1$ 棱镜的取向角; p_a 为LiNbO₃晶体的取向角; δ_a 为其位相延迟; n_0 是其折射率; a, d是晶体的长和宽; r_{22} 是其电光系数; V_0 是晶体上所加的电压。

由于β₁取π/4, 故消光比为无穷大。因存在各种缺陷,一般为几百至壹千。从上可见, δ_a=0, T_{min}取零,说明开关处于封锁状态,再一次说明腔具有零电压封锁特性。

4. 调制特性

电光Q开关的透过率T与晶体所加电压的关系称为调制特性。正常工作时, p_{g} , β_{1} 都 取 $\pi/4$,

则: $T = \sin^2 2\beta_1 \sin^2 \delta_s + \cos^2 2\beta_1 = \sin^2 \delta_s$ 可见, $TQ = 5\delta_s q \neq c$, 即完全由所加电压确定。

5. 抗失调性

由于屋脊棱镜的屋脊线同复合全内反射棱镜的G¹H正交构成腔,形成了补偿结构,棱镜 失调引起腔内光线方向的改变总是限制在最大2a内(a为失调角)。而平-平腔在同样失调角a 下,光线方向变化为 (2m+1)a, m是光线在腔内振荡次数。所以,腔具有抗失调稳定性。

6. 动态热稳定性

动态热稳腔是指腔的激光输出特性对Nd:YAG棒的热焦距f的扰动不 敏 感,一般以 输 出光 斑w为代表即 dw/df = 0^[4]。由于在腔的反馈臂插入可调焦望远镜,适当选取失 焦 量δ就 可补偿棒的热透镜效应, 使腔的输出特性对f的扰动不敏感,即具有动态热稳定性。

三、失焦量∂的选择

望远镜失焦是为了补偿棒热焦距f的扰动。下面从动态热稳腔的必要条件G₁•G₂≈1/2出发¹⁵¹,并根据自孔径选模条件r/w≈1.5,用矩阵分析法和计算机模拟求望远镜的失焦量δ。

屋脊棱镜和复合全内反射棱镜的光线作用矩阵分别为:

可见,它们可等效为平面镜和长度为h/n2或H/n,的空气层系统的矩阵。

根据文献[5],失焦量为δ的望远镜的光线作用矩阵可 等 效 为长为 – f_1 的空气层、焦距为 f_1 的薄透镜、紧靠的倍率为M的薄望远镜和长为 – f_2 的空气层的组 合 系 统的 矩 阵,其中 f_1 , f_2 和M分别为望远物镜、目镜的焦距和倍率, $1/f_T = \delta/f_1^2$ 。

经过以上等效,图1所示腔的等效光路图如图4所示。

$$\mathbf{\vec{x}} \neq \mathbf{i}, \qquad (L_1 = h/n_2 + l_1 + l/2n_0)$$

$$L_2 = l/2n_0 + l_2 + l_3 + d/n_0 + l_4 + (-f_1)$$

$$L_0 = -f_2 + l_5 + H/n_1$$

 这里将棒近似为集距为f的薄透射,其主平面离
 图4 等效腔

 端面距离为 $l/2n_0$, n_0 , l 为棒的折射率和长
 度。以等效平面镜1为参考平面, 腔单程作用矩阵为:

 $a'_{c'} b'_{c'} = \begin{bmatrix} 1 & L_1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1/f & 1 \end{bmatrix} \begin{bmatrix} 1 & L_2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & L_2 \\ -1/f & 1 \end{bmatrix} \begin{bmatrix} M & 0 \\ 0 & 1/M \end{bmatrix} \begin{bmatrix} 1 & L_0 \\ 0 & 1 \end{bmatrix}$

计算得腔的G参数为:

$$G_{1} = a' - \frac{b'}{R_{1}} = a' = M \left[\left(1 - \frac{L_{1}}{f} \right) - \left(L_{1} + L_{2} - \frac{L_{1}L_{2}}{f} \right) / f_{T} \right]$$
(1)

$$G_{2} = d' - \frac{b'}{R_{2}} = \left[1 - \frac{L_{2} + M^{2}L_{0}}{f} \right] / M - \frac{ML_{0}}{f_{T}} + \frac{ML_{0}L_{2}}{ff_{T}}$$
(2)

$$b = b' = (L_1 + L_2 + M^2 L_0) / M - \frac{L_1 L_2}{Mf} + \frac{M L_1 L_2 L_0}{ff_T} - M L_0 \left(\frac{L_1}{f} + \frac{L_1}{f_T} + \frac{L_2}{f_T} \right)$$
(3)

式中,

$$D_{r} = 1/f_{r} = \delta/f_{1}^{2}$$

$$A = \left(1 - \frac{L_{2}}{f}\right) \left(L_{1} + L_{2} - \frac{L_{1}L_{2}}{f}\right) \cdot M^{2}L_{0}$$

$$B = \left(L_{1} + L_{2} - \frac{L_{1}L_{2}}{f}\right) \left(\frac{2M^{2}L_{0}}{f} + \frac{L_{2}}{f} - 1\right) - ML_{0}$$

$$C = \left(1 - \frac{L_{1}}{f}\right) \left(1 - \frac{L_{2}}{f} - \frac{M^{2}L_{0}}{f}\right) - \frac{1}{2}$$

 $AD_{T}^{2} + BD_{T} + C = 0$

令
$$F = \Delta = B^2 - 4AC$$
,解一元二次方程得:
 $\begin{cases} \delta_1 = D_{T_1} \cdot f_1^2 = f_1^2 (-B + \sqrt{F})/2A \\ \delta_2 = D_{T_2} \cdot f_1^2 = f_1^2 (-B - \sqrt{F})/2A \end{cases}$

 $\mathbf{B}G_1 \cdot G_2 = 1/2$, 将 $G_1 \cdot G_2$ 代入, 得:

等效镜面的光斑半径为:

$$\begin{cases}
w_1^2 = \frac{\lambda b}{\pi} \left[\frac{G_2}{G_1(1 - G_1 G_2)} \right] \\
w_2^2 = \frac{\lambda b}{\pi} \left[\frac{G_1}{G_2(1 - G_1 G_2)} \right]
\end{cases}$$
(6)

又因自孔径选模条件要求r/w±1.5,此处w为棒处光 进半径,分析知:

$$\left[w = \sqrt{w_2^2 + \left(\frac{\lambda L_1}{\pi w_2}\right)^2}\right]$$
(7)

从以上各式求出w和f最平稳时的 δ 值就是所求的失焦量。取 $L_1 = 120$ mm, $L_2 = 0$, f = 4.3m, $f_1 = 150$ mm, $M = 2^x$, 经计算机模拟求得 $L_0 = 800$ mm, $\delta = -1.8$ mm, $w_1w_2 = \delta n w_1w_2 = f$ 曲线如图5和图6所示。

四、实验及结果

腔的初始参数按前言所述选择,近似取 l₁为100mm, l₂为70mm, l₃为20mm, l₄为 40mm, l₅为710mm, 望远镜失焦量δ为-1.8mm,物镜焦距为149.76mm,目镜焦距为 -74.82mm,偏振片尺寸为φ25mm×3mm,LiNbO₃晶体尺寸为8mm×8mm×20mm,按图1

(4)

(5)

所示安装构成实际腔长约为1m的侧向输出共振腔。采用自孔径选模,可控硅脉冲 加压 调Q 方式。测得激光输出峰值功率为1.3MW,脉冲半宽度为30ns,采用阈值强度法测得 光 束远 场发散角约为0.6mrad。测得P₂棱镜失调时,能量E与失调角 α 的关系曲 线见图7。从 曲 线

图7 能量E与失调角α的关系曲线
 ・绕屋脊线方向转动(失调)
 ×绕屋脊线垂直方向转动(失调)

图8 远场激光光斑

可知, 屋背线的垂直方向是腔的失调敏感 方向, 能量下降三分之一的失调 角α约为 1mrad, 同时测得同参数的平-平腔的失调 容限角约为0.14mrad。黑纸记录5m远处光 斑见图8。

五、结果及讨证

- 1. 最大失调容限角是平-平腔的7倍, 论具有抗失调稳定性。
- 2. 光束远场发散角约为0.6mrad, 光束发散角较小。
- 3. 远场光斑显示能量有微小扰动,但模式基本不变。
- 4. 无需采取预偏置措施, 电光调Q工作不需封锁高压电源。
- 5. 实验发现, 腔损 耗较大,特别是插入望远镜。

今后应在降低损耗、缩短腔长方面做更多的工作。

参考文献

- (1) Richard's J. AD-A112178, 1981
- [2] 玻思·M, 沃耳夫·E. 光学原理。北京:科学出版社, 1978: 71~77
- [3] 张承铨,罗毓昂,卿光平 et al. 兵器激光, 1981; 5(6): 16~20
- 〔4〕 卢亚雄,吕百达。矩阵光学。大连:大连工学院,1989:236~240
- [5] Hanna D C, Sawyers C G, Yvratich M A. Opt & Quant Electron, 1981; 13: 493~507