Vol.14, No.4

氦氖激光器在点燃过程中输出功率的变化规律

杨之昌 沈长洪

(复旦大学物理系,上海)

摘要: 氦氖激光器的输出功率随点燃时间的增加而不断变化。本文介绍的是通过大量的可靠性试验,把许多离散的数据经过微机处理,找到了长寿命激光管输出 功率的变化规律。

The change rule of He-Ne laser output during the igniting procedure

Yang Zhichang, Shan Chenghong

(Department of Physics, Fudan University)

Abstract: The output of the Ne laser will change with increasing igniting time. By means of many reliability experiments, we proceeded a great deal of data processing by micro-computer and have found the change rule of the long-life He-Ne laser output.

一、原 理

输出功率是氦氖激光器的最重要的参数。在长寿命激光管可靠性试验中,我们发现激光器的输出功率随点燃时间的增加而下降。它的变化规律究竟如何?可从以下几方 面 进 行 讨论:

1. 激光器的寿命

一般的教科书^[1]上定义:当激光器的输出功率下降到原来获得的最高功率的 e 分之 - (37%)时,这段时间称为激光器的寿命。寿命包括激光器的储存寿命和使用寿命。

在电子工业部标准[²]中,定义激光管产品的使用寿命是输出功率不低于额定功率的— 半的连续点燃时间。

在可靠性试验中,因为假设激光管的寿命分布是符合威布尔分布,又符合两项判定激光 管失效标准〔³〕中的一项就认为管子失效。激光管的寿命是指失效前的点燃时间。本文中提到 的寿命采用这一定义。

2. 激光器的输出功率及其与点燃时间的关系

21

氦氖激光管在正常工作情况下其输出功率由下式决定:

$$W = \frac{1}{4} - \pi dT \eta I \cdot \left(\frac{3 \times 10^{-4} l}{a + T/2} - d \right)$$
 (1)

式中, d是放电毛细管的直径; l是有效放电长度; $\eta = \frac{V_{\xi}}{V_{\Theta}}$, 而 V_{ξ} 是振荡模体积, V 管是放电

毛细管的体积; I_* 是常数,称为饱和强度; α 是腔内光损耗系数;T是输出镜的透过率(假设谐 振腔的另一端是全反镜)。输出功率就可以用(1)式估计出来,实验值也可以用功率计直接 进行测量。在可靠性试验中测量最大输出功率时,(1)式可简化为:

$$W_{\text{max}} = \frac{1}{4} \pi d^2 \eta I_{\bullet} \left(\sqrt{g_0 L} - \sqrt{a} \right)^2$$
(2)

式中, g。是小信号增益系数。

根据氦氖激光管失效机理的研究〔◎〕,对长寿命激光管来说,气体成分的变化不是激光 管失效的主要原因, 而反射镜的污染和损伤是激光管失效的重要因素。也就是随着激光管点 燃时间的增加,反射镜的镜面就会发生污染和损伤,这样光损耗系数就会增大,从(2)式 可知,输出功率也就随之减小,可以假设 $[^{0}]_{\alpha}(t) = \alpha_{0} + \beta t$ (β 是光损耗增加的速率),代入 (1)式得到.

$$W_{\rm max} = \frac{1}{4} - \pi d^2 \eta I \, (\sqrt{g_0 L} - \sqrt{a_0 + \beta l})^2 \, .$$

对长寿命激光管来说, 它的光损耗的增加是非常缓慢的, 所以β是很小的, 利用近似公 式把上式改写一下,则 6

$$W_{rax} = \frac{1}{4} - \pi d^2 \eta I \cdot (g_0 L + a_0 + 2\sqrt{g_0 L a} + a)$$

$$\approx \frac{1}{4} - \pi d^2 \eta I \cdot (g_0 L + a_0 + 2\sqrt{g_0 L d_0}) + (\beta - \frac{1}{2} - \frac{\beta}{a_0}) t$$

$$\approx W_0 + \beta' t \qquad (3)$$

这就得到输出功率随着时间线性下降的规律,这个规律可用实验来验证。

3.寿命试验和加速寿命试验中激光器输出功率的测试方法

在可靠性试验中,待测样管是放在寿命试验台上长期点燃,点燃的工作电流分别是7mA。 11mA、15mA、20mA。激光管在不同的工 作电流下,管内的温度就不一样。我们曾用 点接触温度计测定管壳表面的温度, 现将测 量的平均结果整理在表1中。

为了保持测试的一致性,规定在每次测 试前先关闭电源,使激光管自然冷却到室温,

表1	(室温在24℃)					
应力水平(mA)	20	15	11	7		
玻壳表面温度(℃)	60	54	48	40.5		
与室温之差(℃)	36	30	24	16.5		

然后再开启电源,调到正常工作电流,用数字式功率计测定激光器的输出功率,测五次取平均 值。测试周期先是二周一次,在试验后期改为一个月测试一次。在可靠性试验的六年中,测 试仪器正常,测试方法基本一致。

二、试验结果和处理

我们在这一期试验中共取7mA、11mA、15mA、20mA四个应力水平共24支样管,其中 有5支样管因客观原因中途失效,试验结果有效的样管是19支。以740Ⅲ₅为例(15mA应力水 平)测试结果整理在表2中。

- 12		2
- 72		1
~	۰.	-

累计点燃时间	输出功率	累计点燃时间	输出功率	累计点燃时间	输出功率
t(h)	(mW)	t(h)	(mW)	t(h)	(mW)
0	2.43±0.01	2015	1.77±0.02	5084	1.71±0.01
206	2.03 ± 0.02	2297	1.64 ± 0.02	5400	1.55±0.01
377	1.89±0.01	2458	1.64±0.02 V	5742	1.44 ± 0.01
538	1.77±0.01	2599	1.62±0.02	6074	1.55 ± 0.01
699	1.83 ± 0.02	3120	1.94+0.02	6394	1.56 ± 0.02
862	1.65 ± 0.02	3445	1.91±0.01	6728	1.62 ± 0.02
1025	1.62 ± 0.02	3637	1.51±0.01	7062	1.60 ± 0.01
1188	1.66±0.01	4088	1.83 ± 0.01	7395	1.46 ± 0.02
1325	1.55 ± 0.02	4420	1.62 ± 0.02	7680	1.05 ± 0.01
1511	1.52±0.02	4752	1.73 ± 0.02	/	1

将表2的数据作W~t曲线,见图1。

图2 W-t 曲线

A—7mA ×—15mA ⊙—20mA •—11mA

从图1可以看出:输出功率的每次测量偏差在1%~2%,但是W-t 曲线的起伏很大,其 它样管也是如此,所以从一支样管的试验结果很难看出它的规律性,只能把所有样管的试验 结果进行统计。由于每支样管的寿命不一样,测试次数也不同,数据有多有少,离散性很大, 因此,我们用微机来处理数据。基本思想是把每支样管的寿命用T表示,用微机分成十二 等 分的时间间隔,每个时间间隔的测量结果取平均值,然后把属于同一应力水平的样管的测试 结果进行统计平均。现将微机处理的结果整理在表3中。

我们以W为纵坐标, t 为横坐标, 作输出功率和点燃时间的关系曲线, 见图2所示,可以 清楚地看出输出功率随点燃时间的延伸呈现出线性下降曲线。

试验编号					,	
^{功承(} 加W) t=T/12	740 Ⅲ 11	740 X 17	740 II 2 o	740 H 1 7	740 III 3 2	平均值
0	2.75	2.29	2.20	2.79	2.75	2.56
0.5	2.00	1.85	2.12	2.14	2.32	2.09
1.5	1.72	1.95	2.21	2.09	2.12	2.02
2.5	1.82	1.81	2.01	1.89	2.20	1.95
3.5	1.87	1.73	2.13	1.89	2.11	1.95
4.5	2.00	1.69	2.12	1.76	2.14	1.94
5.5	1.93	KID	1.85	1.85	1.87	1.88
6.5	1,4	1.75	1.91	1.89	1.89	1.86
7.5	1.86	1.84	1.61	1.95	1.79	1.81
8.5	1.84	1.69	1.71	1.92	1.61	1.75
9.5	1.78	1.55	1.57	1.87	1.63	1.68
10.5	1.72	1.62	1.68	1.64	1.63	1.66
11.5	1.74	1.46	1,56	1.74	1.07	1.60
12.0	1.79	1.33	1.39	1.70	1.54	1.55
T(h)	9.08×10^{3}	3.40×10^{3}	11.2×10^{3}	5.40×10^{3}	7.30×10^{3}	

表3a 20mA应力水平输出功率和点燃时间的关系

	<u> </u>		a lei Ri	<u> </u>		[
功率(mW) = T/12	740 m₅	740 1	I 1 0	74	0 Ш 2 4	-	740 m 2 5	平均值
0	2.43	2,59	9	2.	,48		2.42	2.48
0.5	1.89	1.9	8	1.94			2.24	2.00
1.5	1.68	2.1	1	2	2.00		2.18	1.96
2.5	1.53	2.0	5	2	2.04		2.01	1.94
3.5	1.68	1,90	6	1,	1.93		1.89	1.87
4.5	1.78	1.92	2	1,	1.91		1.77	1.85
5.5	1.71	.1.87	7	1,	1.84		/	1.81
6.5	1.72	1.70)	1	62		1.89	1.73
7.5	1.72	1.75	5	1.70		1.66		1.71
8.5	1.62	1.65		1.61			2.02	1.72
9.5	1.47	1.52		1.50			1.71	1.55
10.5	1.59	- b. 35	5	1.	39		1.75	1.50
11.5	1.53	1.51	L	1.	28		1.62	1.48
12	1,04	1.22	2	1.	10		1.62	1.25
T(h)	7.6×10 ³	14.0×	10 ³	8,50	×10 ³	5.	70×10^3	
表3c 11mA应	为水平输出功	率和点燃时	间的	关系			· · · · · · · · · · · · · · · · · · ·	
式验编 ⁴ → <i>達(mW)</i> =T/12	740 II 2 3	740 II 2 8	740	Шзе	740 III	4 1	740 Ⅲ ₄₃	平均值
0	2.77	1,98	2.	28	2.7	3	2.39	2.43
0.5	2.27	1.82	2,	.09	2.1	3	2.16	2.09
1.5.	2.23	1.83	2,	.08	1.90	0	2.03	2.01
2.5	2.02	1.70	1.	.97	1.9	2	1.95	1.91
3.5	1.87	1.80	1	82	1.93	7	1.70	1.82
4.5	1.87	1.76	1,	88	1.70	6	1.76	1.81

÷

**--

7

Ξ.

25

续表3C		······································				
5.5	1.89	1.79	2.08	1.75	1.63	1.83
6.5	1.93	1.71	2.04	1.87	1.55	1.82
7.5	2.03	1.60	1.86	1.63	1.59	1.74
8.5	1.99	1.37	1.73	1.57	1.50	1.63
9.5	1.75	1.37	1.72	1.71	1.55	1.62
10.5	1.78	1.45	1.85	1.62	1.39	1.62
11.5	1.67	1.27	1.82	1.58	1.37	1.54
12	1.51	1.03	1.79	1.24	1.18	1.35
<i>T</i> (h)	20.3×10^{3}	14.1×10 ³	7.30×10^{3}	11.0×10^{3}	17.5×10^{3}	
表3d 7mA应力	水平输出功	率和点燃时	间的关系	<u></u>	1	<u></u>
、试验编号	7					
功率(四W) t=T/12	740 Ⅲ ₄	740 Ш в	740 II 14	740 III 1 B	740 II 3 3	平均值
	2 80	2 58	2 20	201	2 83	2 10
	0.41	0.41	1.00	1 75	2.00	
0.5	Z.41	2.41	1.99	1.75	2.23	2.16
1.5	2.40	2.33	1,87	1.77	2.26	2.13
2.5	2.46	2.28	2.17	1.64	2.25	2.16
3.5	2.08	2.17	2.27	1.62 2.20		2.07
4.5	1.78	2.17	2.10	1.62	2.20	1.97
5.5	1.89	2.25	2.04	1.45	2.19	1.96
6.5	1.84	1,91	1.95	1.39	1.98	1.81
7.5	1.63	1.79	1.88	1.40	2.07	1.75
8.5	1.60	1.76	1.92	1.33	2.00	1.72
9.5	1.51	1.72	1.81	1.48	1.81	1.67
10.5	1.45	1.68	1.79	1.20	1.86	1.60
11.5	1.47	1.62	1.38	1.05	1.90	1.48
12	1.13	1.23	1.02	1.01	2.04	1.28
<i>T</i> (h)	28.2×10^{3}	36.0×10^{3}	11.5×10^{3}	20.9×10^{3}	23.4×10 ³	

三、结果分析和结论

1.结果分析

从输出功率W和点燃时间1的曲线上(图2)可以看出:

(1) 虽然测试数据的离散度很大,然而在计算技术的配合下进行统计平均得到W-t 是 线性下降的规律。

(2)每根曲线可以分成三段:在0~0.1T的时间内,W-t曲线呈非线性,这是激光管开始点燃阶段,它逐步走向动态平衡;在0.1~0.9T,曲线是线性下降,四个应力水平的直线 斜率也基本相等,这一关系与(3)式是一致的;在0.9T~T的时间内,曲线开始下降,并 很快趋向失效。

(3) W-t 曲 线中,初始功率是激光管的最佳输出功率,失效时的输出功率是指失效时 刻的测量值,而其它数据是每一阶段的测量平均值。

2.结论

(1) 从图2可以看出四个应力水平的W-t 曲线基本上是平行的,这说明用加大工作电流 进行加速寿命试验是可行的,失效机理基本上没有改变。

(2)由于W-t 曲线是线性关系,所以证明at = α₀ + βt 的假设是正确的。也就是说,长寿命的氦氖激光管随着点燃时间的增加,使反射镜逐步地受污染和损伤,从而导致激光管的失效。

本项工作曾得到东南大学杨正名教授,740厂姜荫周、郭良敏、陈爱娣等同志的支持和帮助,借此表示感谢。

〔1〕 赫光生、雷仕湛,《激光器设计基础》,上海科技出版社,1979年,第四章。

[2] SJ 1870-81, 气体激光器总技术条件。

[3] 杨之昌等,《中国激光》,1989年,第16卷,第7期,第411页。

〔4〕 GB 3187-82,可靠性基本名词术语及定义。

〔5〕 罗宗南等,《应用激光联刊》,1983年,第3卷,第6期,第28页。

〔6〕 刘志国等,《应用激光联刊》,1983年,第3卷,第2期,第61页。

作者简介:杨之昌,见本刊1990年第2期第16页。

沈长洪, 男, 1961年11月出生。工程师。现从事光学测试工作。

收稿日期: 1989年10月16日。

•简 讯•

全国光学设计和CAD软件系统研讨会在长春召开

1990年8月中国光学学会工程光学专委会同吉林省光学学会共同在长春召开全国光学设计和CAD软件系统研讨会,交流光学设计经验,提高设计水平。

(摘自学会活动计划)