

Vol.12.No.6

磺胺嘧啶稀土的喇曼和红外光谱分析

曾维扬 邓汝温 毛微其 张斌 吴集贵

(兰州大学)

本文第一次获得了常温下的磺胺嘧啶和它的稀土化合物磺胺嘧啶铜的刚曼和红外光谱。由定性分析确认了部分谱带的归属。分析表明,稀土离子L的少与磺酰胺基中 氧原子形成了配位键,同时又与嘧啶环上的氨原子形成了共价键

Analysis on Raman and infrared spectra of sulfadiazine and its rare earth compound

Zeng Weiyang, Deng Ruwen, Mao Shuqi, Zhang Bing, Wu Jigui (Lanzhou University)

Abstract

Raman and infrared spectra of H (SD) and La (SD), (SD=ion of sulfadiazine) have been recorded at room temperature for the first time. Assignment for some bands of the spectra has been made by quaditative analysis. It is shown that the ion La+3 is connected with an oxygen atom in sulfadiazine group in a form of coordinate bond while a covalence bond is formed between the ion La+3 and a nitrogen atom located on pyrinidine cycle.

引言

磺胺嘧啶 [Sulfadiazine, H(SD), N-〈___〉-SO,-N-〈N__〉] 是广泛

使用的一种重要磺胺类药物,因而其结构、性质和其金属化合物吸引着很多人进行研究。 Fox曾探索过磺胺嘧啶铈[1]在烧伤上的应用。我国曾制备出十五种磺胺嘧啶稀土化合物[2]。 我们对它们作过X射线实验,实验表明,它们都具有类似的晶体结构,但与磺胺嘧啶属于不同晶型。 文 故目的是利用喇曼和红外光谱来分析有关此类化合物的结构问题,这方面的工作还 没有人做过。

Vol.12.No.6

实验和结果

所得喇曼光谱示于图 2~图 4 户。图 2 为磺胺嘧啶的高频部分。图 3~4 是磺胺嘧啶和磺胺嘧啶镧的 200~2000 cm⁻¹ 波段。图的下半部属于磺胺嘧啶,上半部属于磺胺嘧啶镧。 红外光谱示于图 5~6中。表 1 中列出了苯分子的喇曼和红外光谱线的波数值[3]以及H(SD)和La(SD)。光谱对应的谱带。

本文第一次設得了繁显下的環境資金和它的株立化合物環境密境網的增量和致外光端。由定性分析構立了部分標準可包裹,分析表明、稀上異于Le3+与磷酸羰基中要要子科的工能位益。同时文与会等环上的影脑子形成了其价酸的合能光 (GB) H.1

由于实验是在常温下作的,晶体场分裂将不会显著,因而H(SD)晶格振动的内部模式光谱将与其分子振动光谱基本相同。实验结果支持了这一论点(当然并不是所有的晶体都这样)。晶格振动的外部模式由于分子量大,振幅小,在常温下气谱线强度很弱,不易观测到,因此本实验未记录远红外区的晶格模。H(SD)光谱重要由如下几部分构成:

(1)取代基苯环和密啶环的特征谱 ①喇曼光谱:孤立苯分子的喇曼和红外线波数值如表1中第2~3列所示。喇曼线共有七条,红外线四条。这些谱线在H(SD)光谱中能找到对应的谱带。它们是由取代基苯环和嘧啶环光谱带的重叠构成。与苯分子相比,H(SD)中对应谱带出现多重结构,其主要原因是取代基苯环和嘧啶环比苯分子对称性低,苯的简并振动在H(SD)中要发生分裂。事实上,当苯分子的氢原子在1、4位置上被N和S原子取代后,分子的对称性降为C,v、群的相关图1给出此分子振动的对称类为.

「分子=11A1+6B1+3A2+10B2 Deproved noed evad (enizsibellus deposition of the constant of the con

9A₁+5B₁+2B₂+8B₂ nol and that awards at it sizylene syllatilesup and back at at a sizylene syllatilesup 其振动光谱与取代基苯环在同一区域)⁸ ut qual g anixaballus at mote asylvane

Coverience bond is formed between the and a mid a find a gotton a bond a coverience a coverience bond a coverience bond a coverience a coverien

13. 计特别

Γ分子=12A₁+4A₂+8B₁+12B₂
平动对称类ΓΨ = A₁+B₁+B₂
特动对称类ΓΨ = A₂+B₁+B₂
振动对称类ΓΨ = Γ分 - ΓΨ - ΓΫ = 11A₁+3A₂+6B₁+10B₂

图1 取代基苯环SNC。H。分子振动相关。

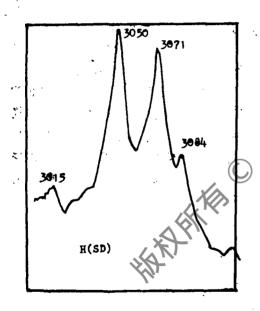


图 2 喇曼光谱 (cm⁻¹)

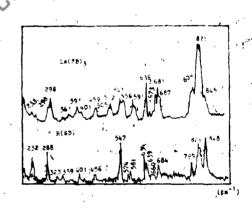


图3 喇曼光谱

共有30个非简并振动。即原来苯分子的简并振动全部解除简并,并都变得喇曼活性,同时又都是红外活性的(除A₂对称类以外)。在H (SD) 和La(SD)₃的光谱中 除 偶 然 简 并和某些谱线太弱不能观察到外,大多数谱线均可识别,其波数值列于表 1 的 $4 \sim 7$ 列。由数值和谱图可以看出,孤立苯分子的喇曼线中t(CC) 模 $(E_{24}, 1595cm^{-1})$ 对应着H (SD)光谱中的1505~1595cm⁻¹谱带, β (HCC) 模 $(E_{24}, 1178cm^{-1})$ 对 应 着1083~1101cm⁻¹ 谱带,t (CC) $(A_{14}, 991cm^{-1})$ 模对应985cm⁻¹谱带, γ (HCC₂) $(E_{14}, 848, 9cm^{-1})$ 模对应

799~848cm⁻¹谱带, S(S-H) [A₁₂3071cm⁻¹和E₂₆3046₆8cm⁻¹] 对应着3050~3084cm⁻¹ 谐带。

②红外光谱,取代基苯环和杂环的红外光谱比苯分子的红外光谱要复杂得多。已有许多作者对它们作过研究[4], 我们得到的 红 外光谱与他们的结果相近。图 5 中的谱线可作如下归属。1403~166Jcm⁻¹区域为环的 骨 架振动【CC、CN】,940~1250cm⁻¹区域为CH面内弯曲振动,662~840cm⁻¹为面外弯曲振动。

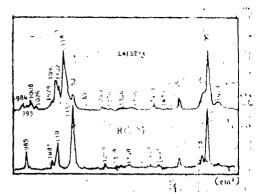


图4 喇曼光谱

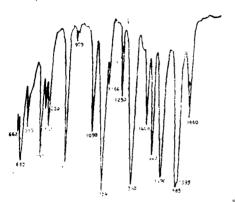


图 5 H (SD) 红外光谱

图 6 La(SD) s 红外光谱

- (2)基团-SO、的特征语 在喇兰光谱中有一条1151cm二谱带、我们不认为它属于取代。基苯环或嘧啶环的振动。可以看出,它的强度比起所处位置环的谱线强得多,可指认为基团-SO、的对称伸缩振动。关于此基团的振动光谱已有许多研究。Brooher等人[5] 作 过 气相 SO、分子的喇曼光谱实验,得到它的v、(A、) 模为1151、3cm-1, v、(A、) 模为518cm-1, v、(B、) 模为132、15cm-1。其中v、和v。是分子的对称和反对称伸缩振动。他们还 作过 SO、晶体的喇曼光谱[6]。虽然由于晶体场,静态场以及同位素效应使上述谱线发生分 裂,但 频率中心仍在上述波数值附近。Schreiber[7]在对讯类化合物的红外特征频率的研究中发现有两个谱带、1300~1350cm-1和1120~1160cm-1,强度极大。指认为S=0的伸缩振 动。 在我们的红外光谱中,同样有1154cm-1和1320cm-1两条强带,因此有理由认为它 们 是 基 团-SO、一的特征谱带。在喇曼光谱中,反对称伸缩振动可能因强度太低未观测到。此基团的角变振动频率落入600cm-1以下区域。
- (3)其它诸带 在喇曼光谱中的200~600cm 区域主要是属于分子中各功能团之间的相对运动谱,亦即整个分子的骨架振动。由于缺乏动力学计算,这些谐带目前还不能分别指认,光谱的另一个区域是1151到1505cm 一,这当中有独条弱而宽的谐带,可能是上述低频振动的合频或倍频。

2. La(SD)₃的光谱分析

将La(SD),和H (SD) 的光谱相对照可以看到如下特征。 ①在喇曼光谱中 1151cm⁻¹ 谱 带消失,1118cm⁻¹处出现一条新的谱带,强度相当,在红外光谱中,对应的 1491cm⁻¹ 谱 带消失而出现了1112cm-1谐带,1320cm-1谐带有失,代之以1340和1315cm-1两条期带。这一一变化表明,La(SD)。中基团-SO₂-的振动受到了很大的影响。这是由于氧原子的未成对的电子进入La³⁺的空轨道形成了配位键,其作用使S=0键力削弱而导致振动概率降(6)。2016 诸线的另一显著变化是在喇曼光谱中,1582~1600cm-1谐带加宽,1620cm-1处出现一弱的宽带(可能是合频),684和985cm-1谐带以及1083~1101cm-1谐带进一步分裂。在红外光谱中,对应于上述的区域也发生明显的变化。这一现象说明铜的加入使分子中苯环或嘧啶环的振动受到了较大的影响。可能是由于氢原子与嘧啶环上的氮原子结合为HN的机率较大,铜再将此氢原子取代而与环上的氮原子形成共价键,由此造成对嘧啶环振动的影响。这就使本来与取代基苯环重合的谐带位移而表现出谐带加宽和分裂。③由喇曼光谱还可看出在 300个分,600cm-1区域、H(SD)和La(SD)。光谱带的位置无明显差异,只是在La(SD)。中分几乎所有的谐带都要宽一点。这可能是Da³的加入对于SD-的空间构型并未产生影响,因此整个分子的骨架振动没有什么变化。但因La³⁺的参与将三个SD-离子联结起来构成了一个大分子,三个SD-离子之间具有微小的偶合(这种偶合也可通过成键部分的作用来实现)使分子骨架振动分裂,而当这种分裂很小不能分辨时,便表现为谐线的展宽。

结 论

以上分析可归纳如下: 在常温下, H (SD)*和La(SD)。的晶体 场 效 应 很 小, 其 光 谱 的晶体场分裂不明显; 镧的加入对于磺胺嘧啶根的构型没有影响, La (SD)。中镧离子 除 与三个嘧啶环上的氮生成了共价键外,还与磺酰胺基上的氮原子有配位键结合。其结构为:

表 1 H (SD), La (SD), 及C。H。 瞒曼和红外光谱波数"(600cm 1以上)

C _e l	H ₆ , (cm ⁻¹)	H (SD) (cm ⁻¹)	La (SD), (cm-1)	
模式	刚 曼 红、外		喇,美、SMO 年 外	
S[CH]E1	3080	J	· 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
S[CH]E ₁	3062	3071(S)	11.00章信号	
S[CH]E ₂	3046.8	3050(S)	Broak : V.	
		1660(面)	1628 - 30-1625	
t[CC]E ₂₄	1595	1959(S) 1695(S)	1.600 - 1.1500	
		1581(W) 1585(S)	1582 1582	
t.d[CC.CCC]	1485	1505(W) 1494(S)	1505 1549	
Elu		1441(VW) 1440(S)	1439 1500	
	, ·	1401 (VW) 1408 (m)	=1421 =143Q 1 + 1 = 1 = V	
			1355 1410	

		1340(VW)	1320(S)	1304	1340
W. T.		1 9(VW)	1250(m)	1276	1815
8[HCC]E2. 1178			1186(m)	1249	1260
A control of the cont	•	[151(S)	115 4(S)	1150:	1240
	1037	1101(m)	1090(m)	1118	1177
A STATE OF THE STA		1083(W)		1102	1112
y' e se s				1092	
			100 5(VW)	1878	1077
t[CC]A ₁₅ 991		985(ma)	9 75(W)	1026	1064
γ[HCC.] 848.9	•		940(8)		
E.		8 48(m)	848(m)	1008	11. 14. Year
Water Commence		826(m)	820(m)	995	4051 7 7 4
A State of the Sta	•		7 92(S)	984	998
, r		7 99(W)	715 (m)	845	970 C 3 12 (
			68 0(S)	821	825
Y[HCC,]A,	671	684(₩)	662(m)	804	\$1 1
$\Psi_{ij} = \mu_{ij} = 0$		660(VW)	. * "	68.7 V	789
1 28		639(W) X	4	68 1	\$1-410
	·. · .	634(W)		l.	ر دوسور دا
@[CCC]E ₁₁ 605	1-11-1		636		

参 考 文 献

- [1] Fox, C.L., Jr., Beu Pat. offen., 1976, 2731648.
- [2] 吴皋青。邓汝温,终新为。蒋正方。《才國稀土学报》,1985年,第3卷,第2 期,第7頁。
- [3] Wilson, E.B., Jr., Molecular Vibrations, McGRAN-Hill PUBLISHING COMPANY, LTD NEW YORK LONDON 1955, P. 235.
- [4] L.J. 贝拉米著,黄维恒等译,《复杂分子的红外光谱》,科学出版社,1975年,第73页和316页。
- [5] Brooker, M. H., Eysel, H. H., J. Raman Spectrosc., 1981, Vol. 11, P. 322.
- [6] Brooker, M. H., J. Mol. Struct., 1984, Vol. 112, P. 221~232.
- [7] Schreiber, K.C., Analyt. Chem., 1949, Vol. 21, P. 1168.

作者简介: 曹维扬, 男, 1941年出生。副教授。1984年以访问学者身份在加拿大 Waterloo大学工作一年半。现从事喇曼和红外光谱、晶格动力学研究。 町加溫 , 男, 1933年出生。 教授。1984年以访问学者身份在加拿大不列颠哥伦比亚大学工作一年。现从事化学专业。

毛淑其。男、副教授。现从事近代物理实验教学。

吴集贵, 男, 1943年出生。副教授。现从事化学专业。

,然。" DNG \$

张 诚, 男, 1961年出生。硕士研究生。

收稿日期: 1988年2月24日。

3 0025

• 简 讯 •

西南技术物理所六项成果通过技术鉴定

由国家机械电子工业部兵科院主持,于一九八八年十二月五日~七日在成都召开技术鉴定会,对机电部西南技术物理研究所研制的小型封离式TEA CO。激光器, 微型 激光 测 距机,多波段激光防护镜,10.6μm窄带干涉滤光片, 10.6μm激光参量上转换探测技术和声表面波滤波器进行了技术鉴定,到会的全国各地专家、教授及同行们审查了提交的技术资料,听取了研制组的研制报告和使用单位的使用报告,对数据进行了现场检测并参观了实物,其结果与技术文件相符,代表们一致认为,鉴定项目的资料齐全,研制结果全面达到并超过原定指标。

小型封离式TEA CO。激光器采用陶瓷壳体,全金属密封,设计合理,工艺可行,结构紧凑,经现场测试和考核,其基模单脉冲输出能量>20mJ,脉宽小于50ns,工作寿命大于10°次,技术性能全面达到并超过兵科院下达的指标。鉴定组的专家同行们一致认为该器件具有重要的实用价值,属国内首创,性能指标达到80年代初中期国外同类器件的先进水平。

微型激光测距机采用高灵敏度的雪崩探测器,高集成化的厚薄膜放大电路,低阈值双掺杂YAG选限模激光器,接收瞄准合一的折叠光路,组件化设计等技术措施,在国内首次研制成功微型 (小于1 kg)激光测距机,具有国内先进水平,为我国激光测距系列填补了空白,该机的研制成功,为我国脉冲激光测距机更广泛的应用增加了新品种。

10.6μm激光参量上转换探测技术勿需低温冷却,灵敏度高,响应时间快,具有重要的应用前景,从测试结果来看在国内均处于领先地位。

多波段激光防护镜,它以质轻、抗冲击、易加工成型、结构合理,配戴合适,使用方便,经表面镀膜增加了耐磨性,提高了表面光洁度,经部队和地方部门使用,效果良好,受到用户好评。该防护镜主要性能达到或超过了美国Glendal光学公司1984年产品的水平。

10.6μm窄带干涉滤光片, 其综合技术指标居国内领先地位, 此项研究成 果易于 推广, 对设备要求不高, 有较高的实用价值。

声表面波滤波器,用于电视讥的中放电路,替代日本同类声表面滤波器。LBN38-S06、LBN38-S06、LBN38-S16 (三洋彩电用)、LBN38-T14 (东芝彩电用)、LBN38A、LBN38-S16声表面波滤波器其电器性能达到国内先进水平、与日本80年代初期同类器件指标相当,是一项具有较高技术水平和较大经济效益的科研成果,器件经测试和批量上机使用,用户反映性能良好,可以转入批量生产。

(本刊通讯员 供稿)