激光技術

Vol.11, No.3

石英晶体膜厚监控仪在红外镀膜中

的初步应用•

李复蝉 蒲发通

(西南技术物理研究所)

本文介绍了兰州物理所研制的SF-3A石英晶体膜厚监控仪在 54 外 皴 膜 (10.6 µm波段) 中的初步实验应用。SF-3A作为光学皴膜的膜厚监测是可行的,实验结果 与理论计算一致,与光电极值法的效果相同。

一、前 盲 🏑

膜厚监控技术,是光学蒋膜技术的主要内容之一,在蒋膜技术发展过程中,曾经使用过 各种各样的监控方法,如极值法及其改进、双色法、波长扫描法、电子模拟微分法、单色定值 比较法、双色四光路控制法、电离感测器法以及石英晶体监控法。其中石英晶体监控法以由 质量转换成厚度,与工作波段无关,设置简单,各种厚度皆可控制,精度高,易于实现自动 控制等独特的优点,将会越来越广泛地在光学薄膜技术中得到应用[1.2]。

本文对SF-3A石英晶体膜厚监控仪用于红外镀膜的初步实验加以介绍。

二、 原 理 和 性 能

SF-3A系利用石英晶体微量天秤原理,采用特定切角、孪生晶体差频技术,以专门的晶体装配座降低温漂。配以中规模CMOS数字电路检测,消除线路时漂,实现了真空沉积膜厚的精确监测[3]。

沉积量的计算公式[3]

$$Q = \frac{z}{2} \left(\frac{1}{f} - \frac{1}{f_0} \right) = 4.42 \times 10^{-5} \left(\frac{1}{f} - \frac{1}{f_0} \right)$$

式中,Q是沉积量 (g/cm^2) , f₀、f是测量晶体沉积前、后的频率 (Hz), z是晶体的声阻 抗 $(8.86 \times 10^5 g/cm^2 \cdot s)$ 。

SF-3A的主要性能指标如下:

1.灵敏度: 4.43×10⁻⁹ (Hz/g/cm²)

收稿日期: 1986年11月17日。

•本文曾在1986年11月在桂林召开的"全国光学薄膜技术交流大会"上宣读。

• 11 •

- 2. 況积量:最小可检4×10⁻⁸g/cm³ (≅1Å)
 分辨率4×10⁻⁹g/cm² (≅0.1Å)
 累积最大可检、固体膜8.9×10⁻⁴g/cm² (≅2µm)
 采样间隔1s
- 3.沉积率:最小可检4×10^{-°}g/cm² s (≈0.1Å/s)
 分辨率4×10⁻⁹g/cm² s (≈0.1Å/s)
 最大可检3.96×10⁻⁷g/cm² s (≈10Å/s)
 采样间隔1s
- 4. 混频输出: 方波频率0.01~200kHz

方波幅度>5~

5.探头频漂,时漂72h≯15Hz

温漂-80~+40℃往返≯300Hz

6.晶体最高运用温度 100℃

SF-3A的主要特点是:

(1)监控灵敏度高,厚度控制达"埃"级水平,(2)沉积膜增厚(镀膜)、减薄(刻蚀)均可监控,(3)频率漂移小,读数稳定、准确,(4)厚度与速率参量同时显示,保证成膜质量,(5)数字显示,醒目直观;(6)可自动巡检频率差值,使故障暴露,在镀膜之前,并可了解晶体的累积频率,以清洗或更换晶体;(7)对使用环境无特殊要求。

本实验在兰州真空设备厂的GD-450B高真空多层镀膜机上进行, 镀制中红外波段 (10.6µm)用的增透膜和反射膜,实验装置如图所示。

在镀膜机底板上, 将备用孔 \$33.5用作接 线座,真空室内、外用 真空密封电引线过渡。 将晶体探头(传感器) 安装在真空室内监控位 了。由于工件盘色旋转 的。将探头位置抬高, 离工件盘一段距离(越

图1 实验装置示意图

短越好)以恰好与工件盘脱离接触为宜。安装冷却水管,把底板上另一备用孔作真空室内、外的过渡接头,紫铜管的一端接橡胶水管,另一端接晶体座基板。把探头附属电路盒安在传感器附近,两者间的连线越短越好。将电路盒与监控线路接通。监控仪后面板上频率走向开关拨右边位置(增加),功能选择开关拨右边位置(镀膜),采用倒计数方式。制作角度挡

板,使晶体片的有效累积厚度值提高若干倍。计算在各种不同工艺条件下的位置因子G的数 值。在石英晶体片上镀铝保护膜(200Å左右),便于清洗后重复使用。取消光源, 滤光片 (单色仪),PbS探测器,FD-1放大器那一套光电极值的膜厚控制装置。按常规程序,清洗 真空室、作舟、加料、装样片、抽高真空,作好镀膜前的一切准备工作。

四、实验及其数据

实验1: 86127*在K,玻璃上镀ZnS,预置厚度d=3600Å;
实验2: 86123*在Ge基底上镀单层ZnS增透膜;
实验3: 86131*在Ge基底上镀Ge-ZnS多层反射膜;
实验4: 86201*同实验3(试验重复性)。
例1: 在K,玻璃上镀ZnS,预置厚度d=3600Å
本机器是旋转的,按余弦定律计算沉积率Q。
A² = D² + B² - 2DBcos φ
L² = H² + A²

$$R = \frac{A}{\sin Q} = \frac{L^2}{2H}$$

$$\theta = \frac{M}{4\pi R^2} = \frac{MH^2}{\pi (H^2 + A^2)}$$

$$\overline{\theta} = \frac{1}{180} \int_{0}^{180} \theta d\phi = \frac{MH^2}{180\pi} \int_{0}^{180}$$

图 2

式中, M为蒸发量, 取R=38,D-125, H_{工件}

 $-2DB\cos\phi$)²

= 180, H 晶体= 193, M=1, 则 Q工件=
 4.459×10⁻⁶, Q晶体=4.241×10⁻⁶, 位置因子G=Q工件/Q晶体=4.459/4.241=1.051。
 硫化锌的密度ρ_{rns}=4.1g/cm³[6.7], 几何

厚度d=3600Å。

混频频率初始值f。=974(拨盘六位全置 于0。打开监控线路电源,按一下预置按钮, 等待片刻即可获得3秒钟的f。显示)^[3],把f。 =974输入EL-838计算器,按面板上刻的公式 进行计算。计算厚度参量预置Δf。的公式为:

 $\mathbf{f}_0 \div 1000 = = -5 \times \times = \times 2.26 \div \mathbf{G} \times \mathbf{D} \times 9 \times 0.1^{[3]}$

(H1

 $974 \div 1000 = -5 \times = \times 2.26 \div 1.05 \times 3600 \times 4.1 \times 0.1 = 7939$

将7939输入拨盘所设预置厚度参量,六位发光数码管显示7939,开始蒸镀,有关数据见表I、I。镀完后取出在JT75-1激光椭圆测厚仪上测得d=4207Å。说明结果 是比 较 准 确的,一是薄膜材料的ρ值取有误差,二是数字显示到零后,才关 挡 板 (第一次操作,无经验)。动作稍有1~2s的滞后,使数字显示多了73(膜厚偏长)。

例2:在Ge基板上镀单层ZnS增透膜,膜系Ge(H)L。

• 13 •

衰 4次试验的蒸发参数

de al la E	晶体	探头与样	挡板	沉积	率Q	位置	因子G	密度ρ(g/cm²)	
头粒编了	(MHz)	片的距离 (mm)		Q工件	Q晶体	ZnS	Ge	Ge	ZnS	
86127*	5	13	/	4.459×10^{-6}	4.241×10-6	1.051	/	·	4.1	*
86123*	5	13	/	$4,459 \times 10^{-6}$	4.241×10-6	1.051	1.051	5.327	4.1	
86131*	5	13	15	4.446	Ge ZnS 3.792 3.833	27.963	28.266	5.327	4.1	
86201*	5	13	15	4.446	Ge ZnS 3.792 3.833	27.963	28.266	5.327	4.1	

用5MHz晶体,探头与样片距离13,有关参数见表 I,用EL-838计算,

(H) $\mathbb{R}^{1330 \div 1000} = = -5 \times \times 2.26 \div 1.05 \times 1375 \times 5.327 \times 0.1 = 3939$

L层5090+1000 = = $-5 \times = \times 2.26 \div 1.05 \times 12619 \times 4.1 \times 0.0 = 27783$

实验数据见表 I, 取出后在PE983G分光光度计上测得T₁. 5 62.81% (透射 率 测试 误差约1%)。曲线见图5、图6,另一面增透后T = 96.77%。

例3: 在Ge基底上镀反射膜,膜系Ge (H) LHLH。 晶体5MHz,探头与样片距离13,挡板开角15°,如图5所示。

 $Q_{\rm H} = \frac{MH^2}{\pi (H^2 + D^2 + R^2 - 2DR\cos\phi)^2}$

M=1, H=193, D=125, R=12。对于ZnS, $\phi_{Z_{0S}} = 150^{\circ}$, Q晶=3.833×10⁻⁶。对于Ge, $\phi_{G_0} = 165^{\circ}$, Q晶=3.792×10⁻⁶。

$$\overline{Q}_{I} = \frac{MH^2}{180\pi} \int_{0}^{180} \frac{d\phi}{(H^2 + D^2 + R^2 - 2DR\cos\phi)^2}$$

M = 1, H = 180, D = 125, R = 28, $Q_{IH} = 4.446 \times 10^{-6}$.

因用15°角度挡板, 故G需除以15°/360°=1/24, 所以Gz.s=4,446/3,833+1/24=1,165

• 14 •

 $\times 24 = 27.963$.

- G_c=4.446/3.792+1/24=1.178×24=28.266 蒸发参数见表 I。EL-838计算:
- 1. (H) $\mathbb{E}_{14486+1000} = -5 \times = \times 2.26 + 28.226 \times 1375 \times 5.327 \times .01 = 146$
- 2. $L \not = 14625 + 1000 = = -5 \times = \times 2.26 + 27.963 \times 12619 \times 4.1 \times .01 = 1039$
- 3. H层15674÷1000 = = $-5 \times = \times 2.26 \div 28.266 \times 6625 \times 5.327 \times .01 = 701$

4.L层16373÷1000 = = $-5 \times = \times 2.26 \div 27.963 \times 12619 \times 4.1 \times .01 = 1038$

5.H层17448÷1000 = = $-5 \times = \times 2.26 \div 28.266 \times 6625 \times 5.327 \times .01 = 700.5$

实验数据见表 I。取出后在PE983G 分光光度计上测得T10.8=11.20%,曲线见图7。

例4: 在Ge基板上锁反射膜。有关参数、实验数据同上,见表 I、表 I。Ge基板取出后在PE983分光光度计上测得T_{10.6} = 11.18%,曲线见图8。

将86131*和86201*样片背面增透后T=8~9%,曲线见图7、图8。

测试曲线和结论

测试曲线见图5、6、7、8。SF-3A石英晶体膜厚监控仪,作为光学镀膜的精细监测是可行的,实验结果与理论计算一致,与用光电极值法镀制的膜片效果相同,它醒目直观,小巧灵便,精度高,是精细监测蒸发镀膜的理想工具。

表	各次试	肇的实驗數值								
火 發	м Н	几何厚度	初始频率	顶置参量	小 B 丘 林		蒸	Ķ	参 教	
编书	政	(¥)	f o	Δf ₀	致气光心	电流(A)	长压(V)	蒸镀时间	真空度(Torr)	蒸发速率Hz/s
86127*	Hgu	3600	974	7939	7939~0~-73	207	67	7' 47"	2×10 ⁻⁵	$10 \sim 18 \sim 28$
+00100		(H)1375	1330	3939	3939~0	214	96	5' 01"	6×10-5	13~15
\$2108	(u) 20	L 12619	2090	27783	27783~0	220	65	4′16″	1×10 ⁻⁵	8~10
		(H) 1375	14486	146	$146\sim 0$	225	100	2′ 15″	6×10 ⁻⁵	1
	нтн	L 12619	14625	1039	$a_{039 \sim 0 \sim -10}$	240	68	6′ 47″	2×10^{-5}	1.5
86131*	т (н)	Н 6625	15674	701	701~2	225	100	10′ 38″		T
) əĐ	L 12619	16373	1038	1038~0~-24	230	70	,60 ,2	2 × 10 ⁻⁵	7
		H 6625	17448	700.5	700~16	230	105	8′ 53″	4×10^{-5}	1
		(H) 1375	18109	145	145~0	225	100	3′ 12″		1
	нл	L 12619	18247	1038	1037~0~-6	225	65	8′15″		7
86201*	нт (н	H 6625	19292	700	$700{\sim}2$	225	100	9′ 58″	4 × 10 ⁻⁵	1
	[) əĐ	L 12619	19996	1037	$1037 \sim 0 \sim -2$	225	65	7'01"	1 × 10 ⁻⁵	2
•		Н 6625	21023	669	700~3	230	105	11′ 39″	2 × 10 ⁻⁵	

• 16 •

由于当时试验条件所限,基片加热实验没有作成,否则会更有实验价值。但从[4]报导中: "SF-3A与基底热接触相当良好,在条件不具备,精度要求与蒸发温度不很高的时侯, 晶体基座板可以不通水冷却……不能认为,不通水有明显的影响。"

本实验工作得到兰州物理所薛大同、魏向荣同志的大力协助,周九林同志的指导,唐和 玲同志测试,赵学力、谢朝珍、邓根固同志参加焊接、机械加工、镀铝膜,在此一并致谢。

多考文献

- [1] 《SF-3A型石英晶体膜厚监控仪》,兰州物理所出版。
- [2] 薛大同、魏向荣, 蒸发镀膜的精细监测 (内部资料)。
- [3] 周九林、尹树百编译,《光学薄膜技术》,国防工业出版社,1974年。

[4] 《红外光学手册》,国外红外与激光技术编辑组,1973年。

The preliminary application of the guarts crystal monitor to infrared coating

Li Fuchan, Pu Fatong

(Southwest Institute of Technical Physics) -

ract

The preliminary experiments using the model SF-3A quartz crystal monitor for infrared coating are described SF-3A monitor is feasible as a film thickness monitor, and the resulting results are consistent with the calculation and similar with optical monitoring.

作者简介: 李复蝉, 女, 1941年1月出生, 中国真空学会会员。从事光 学 薄 膜 工 艺 工 作, 曾参加"光学薄膜偏振片" 课题的研制, 该课题81年前兵器工业部"重大技术改进一等 柴", 85年获"国家科学技术进步三等奖"。

蒲发通, 男, 1938年4月出生;现从事光学薄膜工艺工作, 曾参加"光学薄膜偏 振片" 课题的研制, 该课题81年获兵器工业部"重大技术改进一等奖", 85年茨"国家科学技术进 步三等奖"。

• 17 •