[1]
|
徐强, 沈思, 谢修敏, 等. 可用于激光雷达的量子光学技术[J]. 激光技术, 2021, 45(1): 44-47. doi: 10.7510/jgjs.issn.1001-3806.2021.01.008
XU Q, SHEN S, XIE X M, et al. Quantum optical techniques for laser detection and ranging[J]. Laser Technology, 2021, 45(1): 44-47(in Chinese). doi: 10.7510/jgjs.issn.1001-3806.2021.01.008 |
[2]
|
SHI H, CHANG P, WANG Z, et al. Frequency stabilization of a Cesium Faraday laser with a double-layer vapor cell as frequency reference[J]. IEEE Photonics Journal, 2022, 14(6): 1561006. |
[3]
|
CHOU C W, HUME D B, ROSENBAND T, et al. Optical clocks and relativity[J]. Science, 2010, 329(5999): 1630-1633. doi: 10.1126/science.1192720 |
[4]
|
LUVSANDAMDIN E, SPIEβBERGER S, SCHIEMANGK M, et al. Development of narrow linewidth, micro-integrated extended cavity diode lasers for quantum optics experiments in space[J]. Applied Physics, 2013, B111(2): 255-260. |
[5]
|
LUDLOW A D, ZCLCVINSKY T, CAMPBELL G K, et al. Sr lattice clock at 1×10-16 fractional uncertainty by remote optical evaluation with a Ca clock[J]. Science, 2008, 319(5871): 1805-1808. doi: 10.1126/science.1153341 |
[6]
|
HUMMON M T, KANG S, BOPP D G, et al. Photonic chip for laser stabilization to an atomic vapor with 10-11 instability[J]. Optica, 2018, 5(4): 443-449. doi: 10.1364/OPTICA.5.000443 |
[7]
|
张建伟, 宁永强, 张星, 等. 高温工作垂直腔面发射半导体激光器现状与未来(特邀)[J]. 光子学报, 2022, 51(2): 0251201.
ZHANG J W, NING Y Q, ZHANG X, et al. Development and future of vertical cavity surface emitting lasers operated at high temperatures (invited)[J]. Acta Photonica Sinica, 2022, 51(2): 0251201(in Chinese). |
[8]
|
何幸锴, 侯辉, 冯力天, 等. 1550 nm单频脉冲光纤激光放大器实验研究[J]. 激光技术, 2011, 35(2): 145-148. doi: 10.3969/j.issn.1001-3806.2011.02.001
HE X K, HOU H, FENG L T, et al. Experimental study of 1550 nm single frequency pulsed fiber laser amplifiers[J]. Laser Technology, 2011, 35(2): 145-148(in Chinese). doi: 10.3969/j.issn.1001-3806.2011.02.001 |
[9]
|
FABIAN M, NICOLE K, BENNO W. Stabilized laser system at 1550 nm wavelength for future gravitational-wave detectors[J]. Physical Review, 2022, D105(12): 122004. |
[10]
|
KRAKOWSKIA M, MEGHNAGIA M, AFUSO-ROXOA P, et al. Modulated DFB-ridge laser diodes at 894 nm for compact Cesium CPT atomic clocks[J]. Proceedings of the SPIE, 2023, 12440: 1244004. |
[11]
|
JIMENEZ A, MILDE T, STAACKE N, et al. Narrow-line external cavity diode laser micro-packaging in the NIR and MIR spectral range[J]. Applied Physics, 2017, B123(7): 1-14. |
[12]
|
YIM S, KIM T, CHOI J. A simple extended-cavity diode laser using a precision mirror mount[J]. Review of Scientific Instruments, 2020, 91(4): 046102. doi: 10.1063/1.5140560 |
[13]
|
郭天华, 汪岳峰, 于广礼. 光纤光栅外腔半导体激光器理论模型分析与选取[J]. 激光技术, 2017, 41(2): 225-230. doi: 10.7510/jgjs.issn.1001-3806.2017.02.016
GUO T H, WANG Y F, YU G L. Selection and analysis of theoretical model of fiber Bragg grating external cavity laser diode[J]. Laser Technology, 2017, 41(2): 225-230(in Chinese). doi: 10.7510/jgjs.issn.1001-3806.2017.02.016 |
[14]
|
王直圆, 陈超, 单肖楠, 等. 光纤光栅外腔半导体激光器噪声特性仿真[J]. 激光与光电子进展, 2017, 54(1): 011401.
WANG Zh Y, CHEN Ch, SHAN X N, et al. Simulation of noise characteristics of fiber grating external cavity lasers[J]. Laser and Optoelectronics Progress, 2017, 54(1): 011401(in Chinese). |
[15]
|
ZHANG L, WEI F, SUN G W, et al. Thermal tunable narrow linewidth external cavity laser with thermal enhanced FBG[J]. IEEE Photonics Technology Letters, 2017, 29(4): 385-388. doi: 10.1109/LPT.2017.2648889 |
[16]
|
PAUL A. MORTON, MICHAEL J M. High-power, ultra-low noise hybrid lasers for microwave photonics and optical sensing[J]. Journal of Lightwave Technology, 2018, 36(21): 5048-5057. doi: 10.1109/JLT.2018.2817175 |
[17]
|
HISHAM H K, ABAS A F, MAHDIRAJI G A, et al. Improving the characteristics of the modulation response for fiber Bragg grating Fabry-Perot lasers by optimizing model parameters[J]. Optics and Laser Technology, 2012, 44(6): 1698-1705. doi: 10.1016/j.optlastec.2012.01.027 |
[18]
|
HAO L, WANG X, JIA K, et al. Narrow-linewidth single-polarization fiber laser using non-polarization optics[J]. Optics Letters, 2021, 46(15): 3769-3772. doi: 10.1364/OL.434307 |
[19]
|
LUO X C, CHEN C, NING Y Q, et al. Single polarization, narrow linewidth hybrid laser based on selective polarization mode feedback[J]. Optics and Laser Technology, 2022, 154: 108340. doi: 10.1016/j.optlastec.2022.108340 |
[20]
|
HENRY C H. Theory of the linewidth of semiconductor lasers[J]. IEEE Journal of Quantum Electronics, 1982, 18(2): 259-264. doi: 10.1109/JQE.1982.1071522 |
[21]
|
MALINAUSKAS M, ŽUKAUSKAS A, HADEGAWA S, et al. Ultrafast laser processing of materials: from science to industry[J]. Light: Sciences and Applications, 2016, 5(8): e16133. doi: 10.1038/lsa.2016.133 |
[22]
|
徐华伟, 宁永强, 曾玉刚, 等. 852 nm半导体激光器InGaAlAs, InGaAsP, InGaAs和GaAs量子阱的温度稳定性[J]. 发光学报, 2012, 33(6): 640-646.
XU H W, NING Y Q, ZENG Y G, et al. Temperature stability of InGaAlAs, InGaAsP, InGaAs and GaAsquantum-wells for 852 nm laser diode[J]. Chinese Journal of Luminescence, 2012, 33(6): 640-646(in Chinese). |
[23]
|
VERMERSCH F J, LIGERET V, BANSROPUN S, et al. High-power narrow linewidth distributed feedback lasers with an Aluminium-free active region emitting at 852 nm[J]. IEEE Photonics Technology Letters, 2008, 20(13): 1145-1147. doi: 10.1109/LPT.2008.924903 |
[24]
|
LUO X C, CHEN C, NING Y Q, et al. High linear polarization, narrow linewidth hybrid semiconductor laser with an external birefringence waveguide Bragg grating[J]. Optics Express, 2021, 29(21): 33109-33120. doi: 10.1364/OE.431341 |
[25]
|
WANG Y, TAI H, DUAN R, et al. Super-gain nanostructure with self-assembled well-wire complex energy-band engineering for high performance of tunable laser diodes[J]. Nanophotonics, 2023, 12(9): 1763-1776. doi: 10.1515/nanoph-2023-0013 |
[26]
|
WANG Z, KE C, ZHONG Y, et al. Ultra-narrow-linewidth measurement utilizing dual parameter acquisition through a partially coherent light interference[J]. Optics Express, 2020, 28(6): 8484-8493. doi: 10.1364/OE.387398 |
[27]
|
CANAGASABEY A, MICHIE A, CANNING J, et al. A comparison of Michelson and Mach-Zehnder interferometers for laser linewidth measurements[C]//2011 International Quantum Electronics Conference (IQEC) and Conference on Lasers and Electro-Optics (CLEO) Pacific Rim. New York, USA: IEEE Press, 2011: 1392-1394. |
[28]
|
CHEN M, MENG Z, WANG J F, et al. Ultra-narrow linewidth measurement based on Voigt profile fitting[J]. Optics Express, 2015, 23(5): 6803-6808. doi: 10.1364/OE.23.006803 |