[1]
|
MAINE P, STRICKLAND D, BADO P, et al. Generation of ultrahigh peak power pulses by chirped pulse amplification[J]. IEEE Journal of Quantum Electronics, 1988, 24(2): 398-403. doi: 10.1109/3.137 |
[2]
|
PERRY M, MOUROU G. Terawatt to petawatt subpicosecond lasers[J]. Science, 1994, 264(5161): 917-924. doi: 10.1126/science.264.5161.917 |
[3]
|
EIDAM T, HANF S, SEISE E, et al. Femtosecond fiber cpa system emitting 830W average output power[J]. Optics Letters, 2010, 35(2): 94-96. doi: 10.1364/OL.35.000094 |
[4]
|
MOUROU G, BARTY C, PERRY M. Ultrahigh-intensity laser: Physics of the extreme on a tabletop[J]. Physics Today, 1998, 51(1): 22-28. doi: 10.1063/1.882131 |
[5]
|
CORKUM P, KRAUSZ F. Attosecond science[J]. Nature Physics, 2007, 3(6): 381-387. doi: 10.1038/nphys620 |
[6]
|
KRAUSZ F, IVANOV M. Attosecond physics[J]. Reviews of Modern Physics, 2009, 81(1): 163-205. doi: 10.1103/RevModPhys.81.163 |
[7]
|
POGORELSKY I, BEN-ZVI I, HIROSE T, et al. Demonstration of 8×1018 photons/second peaked at 1.8Å in a relativistic thomson scattering experiment[J]. Physical Review Special Topics- Accelerators and Beams, 2000, 3(9): 090702. doi: 10.1103/PhysRevSTAB.3.090702 |
[8]
|
SAKAI I, AOKI T, DOBASHI K, et al. Production of high brightness γ rays through backscattering of laser photons on high-energy electrons[J]. Physical Review Special Topics-Accelerators and Beams, 2003, 6(9): 091001. doi: 10.1103/PhysRevSTAB.6.091001 |
[9]
|
YAN W, FRUHLING C, GOLOVIN G, et al. High-order multiphoton thomson scattering[J]. Nature Photonics, 2017, 11(8): 514-520. doi: 10.1038/nphoton.2017.100 |
[10]
|
SUORTTI P, THOMLINSON W. Medical applications of synchrotron radiation[J]. Physics in Medicine & Biology, 2003, 48(13): R1. |
[11]
|
CHI Z, DU Y, HUANG W, et al. Linearly polarized X-ray fluorescence computed tomography based on a thomson scattering light source: A monte carlo study[J]. Journal of Synchrotron Radiation, 2020, 27(3): 737-745. doi: 10.1107/S1600577520003574 |
[12]
|
KHRENNIKOV K, WENZ J, BUCK A, et al. Tunable all-optical quasimonochromatic thomson X-ray source in the nonlinear regime[J]. Physical Review Letters, 2015, 114(19): 195003. doi: 10.1103/PhysRevLett.114.195003 |
[13]
|
ZHUANG J, YAN Y, ZHOU X, et al. Quasi-monochromatic spectral emission characteristics from elec-tron collision with tightly focused laser pulses[J]. Laser Physics, 2021, 31(3): 035401. doi: 10.1088/1555-6611/abe23b |
[14]
|
MIKHAILOVA Y, PLATONENKO V, RYKOVANOV S. Generation of an attosecond X-ray pulse in a thin film irradiated by an ultrashort ultrarelativistic laser pulse[J]. Journal of Experimental and Theoretical Physics Letters, 2005, 81(11): 571-574. doi: 10.1134/1.2029946 |
[15]
|
PHUOC K, CORDE S, THAURY C, et al. All-optical compton gamma-ray source[J]. Nature Photonics, 2012, 6(5): 308-311. doi: 10.1038/nphoton.2012.82 |
[16]
|
LEE K, CHUNG S, PARK S, et al. Effects of high-order fields of a tightly focused laser pulse on rela-tivistic nonlinear thomson scattered radiation by a relativistic electron[J]. EPL (Europhysics Letters), 2010, 89(6): 64006. doi: 10.1209/0295-5075/89/64006 |
[17]
|
BALTUŠKA A, UDEM T, UIBERACKER M, et al. Attosecond control of electronic processes by intense light fields[J]. Nature, 2003, 421(6923): 611-615. doi: 10.1038/nature01414 |
[18]
|
WANG H R, XIA F Y, TIAN Y W. Simulation calculation of the influence of pulse width on the peak radiation of laser impact electron[J/OL]. (2021-06-08). https://kns.cnki.net/kcms/detail/51.1125.tn.20210608.1356.006.html (in Chinese). |
[19]
|
YAN Y L, ZHOU X, REN Sh L, et al. Influence of electron's initial position on spatial radiation of high-energy electrons[J/OL]. (2021-06-29). https://kns.cnki.net/kcms/detail/51.1125.tn.20210629.1330.006.html (in Chinese). |
[20]
|
LEE K, CHA Y, SHIN M, et al. Relativistic nonlinear thomson scattering as attosecond X-ray source[J]. Physical Review, 2003, E67(2): 026502. |
[21]
|
ZHENG J, SHENG Z, ZHANG J, et al. Parameters that influenee the nonlinear thomson scattering of single electrons in high-intensity laser fields[J]. Acta Physica Sinica, 2005, 54(3): 1018-1035(in Chinese). doi: 10.7498/aps.54.1018 |
[22]
|
VAIS O, BOCHKAREV S, BYCHENKOV V. Nonlinear thomson scattering of a relativistically strong tightly focused ultrashort laser pulse[J]. Plasma Physics Reports, 2016, 42(9): 818-833. doi: 10.1134/S1063780X16090105 |
[23]
|
LI K, LI L, SHU Q, et al. Spatial characteristics of motion and emission from electron driven by linearly polarized tightly focused laser pulses[J]. Optik, 2019, 183: 813-817. doi: 10.1016/j.ijleo.2019.02.154 |
[24]
|
WANG Y, WANG C, LI K, et al. Spatial radiation features of thomson scattering from electron in circularly polarized tightly focused laser beams[J]. Laser Physics Letters, 2020, 18(1): 15303. |
[25]
|
BAUER D, MULSER P, STEEB W H. Relativistic ponderomotive force, uphill acceleration, and transition to chaos[J]. Physical Review Letters, 1995, 75(25): 4622. doi: 10.1103/PhysRevLett.75.4622 |
[26]
|
CHEN Z, QIN H, CHEN X, et al. Spatial radiation features of circularly polarized tightly focused laser beams colliding with electrons[J]. Laser Physics, 2021, 31(7): 075401. doi: 10.1088/1555-6611/ac0046 |
[27]
|
SHENG Z M. Advances in high field laser physics[M]. Shanghai: Shanghai Jiao Tong University Press, 2014: 4-18(in Chinese). |