[1]
|
HANF S, BÖGÖZI T, KEINER R, et al. Fast and highly sensitive fiber-enhanced Raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care diagnosis of malabsorption disorders in exhaled human breath[J]. Analytical Chemistry, 2015, 87(2):982-988. |
[2]
|
BURIC M P, CHEN K, FALK J, et al. Raman sensing of fuel gases using a reflective coating capillary optical fiber[J]. Proceedings of the SPIE, 2009, 7316:731608. doi: 10.1117/12.818746 |
[3]
|
KEINER R, HERRMANN M, KVSEL K, et al. Rapid monitoring of intermediate states and mass balance of nitrogen during denitrification by means of cavity enhanced Raman multi-gas sensing[J]. Analytica Chimica Acta, 2015, 864:39-47. doi: 10.1016/j.aca.2015.02.007 |
[4]
|
FRISS A J, LIMBACH C M, YALIN A P. Cavity-enhanced rotational Raman scattering in gases using a 20mW near-infrared fiber laser[J]. Optics Letters, 2016, 41(14):3193-3196. doi: 10.1364/OL.41.003193 |
[5]
|
LI X, XIA Y, ZHAN L, et al. Near-confocal cavity-enhanced Raman spectroscopy for multitrace-gas detection.[J]. Optics Letters, 2008, 33(18):2143-2145. doi: 10.1364/OL.33.002143 |
[6]
|
KING D A, PITTARO R J. Simple diode pumping of a power-buildup cavity[J]. Optics Letters, 1998, 23(10):774-776. doi: 10.1364/OL.23.000774 |
[7]
|
OHARA S, YAMAGUCHI S, ENDO M, et al. Performance characteristics of power build-up cavity for raman spectroscopic measurement[J]. Optical Review, 2003, 10(5):342-345. doi: 10.1007/s10043-003-0342-y |
[8]
|
SATO J, ENDO M, YAMAGUCHI S, et al. Simple annular-beam generator with a laser-diode-pumped axially off-set power build-up cavity[J]. Optics Communications, 2007, 277(2):342-348. doi: 10.1016/j.optcom.2007.05.015 |
[9]
|
KEINER R, FROSCH T, HANF S, et al. Raman spectroscopy—an innovative and versatile tool to follow the respirational activity and carbonate biomineralization of important cave bacteria[J]. Analytical Chemistry, 2013, 85(18):8708-8714. doi: 10.1021/ac401699d |
[10]
|
KEINER R, FROSCH T, MASSAD T, et al. Enhanced Raman multigas sensing—a novel tool for control and analysis of 13CO2 labeling experiments in environmental research[J]. Analyst, 2014, 139(16):3879-3884. doi: 10.1039/C3AN01971C |
[11]
|
HIPPLER M. Cavity-enhanced Raman spectroscopy of natural gas with optical feedback CW-diode lasers[J]. Analytical Chemistry, 2015, 87(15):7803-7809. doi: 10.1021/acs.analchem.5b01462 |
[12]
|
SALTER R, CHU J, HIPPLER M. Cavity-enhanced Raman spectroscopy with optical feedback CW diode lasers for gas phase analysis and spectroscopy[J]. The Analyst, 2012, 137(20):4669-4676. doi: 10.1039/c2an35722d |
[13]
|
HIPPLER M, MOHR C, KEEN K A, et al. Cavity-enhanced resonant photoacoustic spectroscopy with optical feedback CW diode lasers: A novel technique for ultratrace gas analysis and high-resolution spectroscopy[J]. Journal of Chemical Physics, 2010, 133(4):044308. doi: 10.1063/1.3461061 |
[14]
|
ZUO D L, YU A L, LI Z, et al. Application of imaging spectrometer in gas analysis by Raman scattering[J]. Proceedings of the SPIE, 2015, 9611:96110N. |
[15]
|
DAHMANI B, HOLLBERG L, DRULLINGER R. Frequency stabilization of semiconductor lasers by resonant optical feedback[J]. Optics Letters, 1987, 12(11):876-878. doi: 10.1364/OL.12.000876 |
[16]
|
LAURENT P, CLAIRON A, BRÉANT C. Frequency noise analysis of optically self-locked diode lasers[J]. IEEE Journal of Quantum Electronics, 1989, 25(6):1131-1142. doi: 10.1109/3.29238 |
[17]
|
LEWOCZKO-ADAMCZYK W, PYRLIK C, HÄGER J, et al. Ultra-narrow linewidth DFB-laser with optical feedback from a monolithic confocal Fabry-Perot cavity[J]. Optics Express, 2015, 23(8):9705-9709. doi: 10.1364/OE.23.009705 |