[1]
|
PAULY S, SCHRICKER C, SCUDINO S, et al. Processing a glass-forming Zr-based alloy by selective laser melting[J]. Materials & Design, 2017, 135:133-141. |
[2]
|
YE X, BAE H, SHIN Y C, et al. In situ synthesis and characterization of Zr-based amorphous composite by laser direct deposition[J]. Metallurgical and Materials Transactions, 2015, A46(9):4316-4325. |
[3]
|
PAULY S, LBER L, PETTERS R, et al. Processing metallic glasses by selective laser melting[J]. Materials Today, 2013, 16(1/2):37-41. |
[4]
|
JUNG H Y, CHOI S J, PRASHANTH K G, et al. Fabrication of Fe-based bulk metallic glass by selective laser melting: A parameter stu-dy[J]. Materials & Design, 2015, 86:703-708. |
[5]
|
LI X P, ROBERTS M P, O'KEEFFE S, et al. Selective laser melting of Zr-based bulk metallic glasses: Processing, microstructure and me-chanical properties[J]. Materials & Design, 2016, 112:217-226. |
[6]
|
ZHANG Y, LIN X, WANG L, et al. Microstructural analysis of Zr55Cu30Al10Ni5 bulk metallic glasses by laser surface remelting and laser solid forming[J]. Intermetallics, 2015, 66:22-30. doi: 10.1016/j.intermet.2015.06.007 |
[7]
|
SCHMIDT M, MERKLEIN M, BOURELL D, et al. Laser based additive manufacturing in industry and academia[J]. CIRP Annals—Manufacturing Technology, 2017, 66(2):561-583. doi: 10.1016/j.cirp.2017.05.011 |
[8]
|
LU Y, ZHANG H, LI H, et al. Crystallization prediction on laser three-dimensional printing of Zr-based bulk metallic glass[J]. Journal of Non-Crystalline Solids, 2017, 461:12-17. doi: 10.1016/j.jnoncrysol.2017.01.038 |
[9]
|
GU D D, MA Ch L, XIA M J, et al. A multiscale understanding of the thermodynamic and kinetic mechanisms of laser additive manufacturing[J]. Engineering, 2017, 3(5):675-684. doi: 10.1016/J.ENG.2017.05.011 |
[10]
|
LIU Sh B, LIU J Ch, QI L J, et al. Numerical simulation of laser remelting process based on smoothed particles hydrodynamics method[J]. Transactions of Materials and Heat Treatment, 2017, 38(1):184-190(in Chinese). |
[11]
|
GAN Y. Study on microstructure and property of Zr-Al-Ni-Cu amorphous material prepared by laser additive manufacturing[D]. Taiyuan: Taiyuan University of Technology, 2015: 23-29(in Chinese). |
[12]
|
CAI Ch B, LI M Y, HAN B, et al. Numerial simulation iron-based cladding coating with wide-band laser at different preheating tempe-ratures[J]. Applied Laser, 2017, 37(1):66-71(in Chinese). |
[13]
|
TSENG W C, AOH J N. Simulation study on laser cladding on preplaced powder layer with a tailored laser heat source[J]. Optics & Laser Technology, 2013, 48(11):141-152. |
[14]
|
HU Q, LIN X, YANG G L, et al. Crystallization behavior of Zr55Al10Ni5Cu30 amorphous alloys with different morphologies and thermal history conditions[J]. Acta Metallurgica Sinica, 2012, 48(12):1467-1473(in Chinese). doi: 10.3724/SP.J.1037.2012.00433 |
[15]
|
YANG G L, LIN X, HU Q, et al. Effect of specimen temperature on crystallization during laser remeltitng Zr55Cu30Al10Ni5 bulk metallic glass[J]. Acta Metallurgica Sinica, 2013, 49(8):925-931(in Ch-inese). doi: 10.3724/SP.J.1037.2013.00166 |
[16]
|
LI G, JIA M D, LIU L, et al. Microstructure and properties of laser cladding Ni40Zr30Ta28 amorphous alloy coating[J]. Laser Technology, 2010, 34(3):306-308(in Chinese). |
[17]
|
HE Y Y, LIU Y J, CHEN M, et al. Study on the law of laser scanning rate and microstructure and properties of cladding layer[J]. Laser Technology, 2019, 43(2):201-204(in Chinese). |
[18]
|
XUA H D, LUA Y Zh, et al. Laser 3-D printing of Zr-based bulk metallic glass[J]. Journal of Manufacturing Processes, 2019, 39:102-105. doi: 10.1016/j.jmapro.2019.02.020 |
[19]
|
DI O, NING L, LIN L. Structural heterogeneity in 3-D printed Zr-based bulk metallic glass by selective laser melting[J]. Journal of Alloys & Compounds, 2018, 740:603-609. |
[20]
|
DI O, NING L, WEI X, et al. 3-D printing of crack-free high strength Zr-based bulk metallic glass composite by selective laser melting[J]. Intermetallics, 2017, 90:128-134. doi: 10.1016/j.intermet.2017.07.010 |