HTML
-
为了验证本文中提出算法在计算精度和计算性能上面的提升,在计算机上使用本文中算法和其它传统算法对模拟散斑图像进行特征点匹配,计算亚像素位移值。参考ZHOU[20]提出的模拟散斑图模拟物体表面的变形过程,变形前后的模拟散斑图灰度表示为:
式中,s为散斑颗粒数量,r为散斑颗粒半径,(x0, y0)为散斑图中心位置,I0为光强分布; u, ux, uy, v, vx, vy为散斑的变形参量,决定图像的位移量和应变量。为验证不同的纹理对测量的影响,将散斑颗粒大小r、颗粒数目s分别设置为3pixels、2500和2pixels、4500两组,如图 4所示。每组vx应变值按照0.005的步距由0.001过渡到0.05。
分别利用传统N-R迭代法、曲面拟合法与本文中算法对目标图像中随机数据点进行匹配。比较不同散斑颗粒尺寸、不同散斑颗粒数目和不同应变值对测量平均误差和标准差的影响,结果如图 5、图 6所示。最后对迭代次数和匹配时间进行对比,如表 1所示。
data point coordinates the proposed algorithm traditional N-R iteration number of iterations matched time/s number of iterations matched time/s (101, 151) 2 2.099 5 3.524 (101, 202) 2 2.188 4 3.416 (152, 151) 1 1.922 3 3.180 (152, 202) 2 2.109 4 3.461 (203, 151) 1 1.874 3 3.195 (203, 202) 1 1.865 5 4.023 (254, 151) 2 2.185 6 5.452 (254, 202) 2 2.124 4 3.244 Table 1. Comparison of computational performance at different data points
模拟散斑实验结果表明,随着应变的增加,3种算法的误差平均值均呈现上升趋势,且曲面拟合方法的误差较大,本文中算法生成较为准确的初值估计,一定程度上降低了平均误差值,但在应变值小于0.01时误差值稍大于传统N-R迭代法,这是仿射变换过程引入了计算误差的缘故。本文中算法和传统N-R迭代法的标准差较为稳定,曲面拟合法标准差数值较大且有震荡现象。应变进一步增大后,本文中算法的标准差值相对传统N-R迭代法的标准差值降低,说明在大变形情况下本文中算法能够保持稳定性。同时,对比结果可看出散斑颗粒大小和颗粒数量的变化对变形测量的影响不大。从表 1可看出,本文中算法一定程度上也减少了N-R迭代运算次数,对比两种方法的平均计算时间可发现,本文中算法的匹配时间相对传统方法平均降低37.54%, 在计算效率上有一定的提高。
-
为验证本文中算法在实际应用中的可靠性,选取直径60mm、高度150mm的橡胶圆柱棒材进行压缩变形测量实验。在试件表面制作散斑图案,将试件放置在位移分辨率为0.001mm的精密伺服压力机上,以0.1mm为步距对试件压缩,试件压缩量分别为0.5mm, 0.6mm, …, 3.5mm。采用Baumer的LXG120M型号CCD相机采集图像,帧频为10frame/s。具体实验装置如图 7a所示。
为了获得材料在压缩后的变形场信息,在一系列压缩图像中选取两幅图像作为图像处理的样本,如图 7b、图 7c所示。采用本文中算法和传统N-R迭代法对橡胶压缩变形表面进行区域位移场分布计算,计算过程中数据点之间的间距设置为51个像素,计算结果如图 8所示。结果显示位移场中矢量箭头朝向试件的右下方,这是由于所选测量区域位于橡胶中部偏右,轴向的压缩位移和径向的膨胀位移同时作用。将位移场沿x和y方向分解,结果显示y方向为主要变形方向,x方向由左向右位移值逐渐增大,符合橡胶圆柱压缩过程中轴向变形为主,膨胀变形为辅的规律,等值线分布图如图 9所示。通过位移场可以计算出应变分布,本文中算法感兴趣区域内测量应变均值为0.0061,与采用ANSYS 17.0仿真分析中该区域0.0069应变值接近,说明测量算法在实际应用中可靠。