[1]
|
WANG Q Y. Energy dictionary[M]. Beijing: China Petrochemical Press, 2004: 89-90(in Chinese). |
[2]
|
ARAGON C, AGUILERA J A. Direct analysis of aluminum alloys by CSigma laser induced breakdown spectroscopy[J]. Analytica Chimica Acta, 2018, 1009: 12-19. doi: 10.1016/j.aca.2018.01.019 |
[3]
|
HAO Z, GUO L, LI C, et al. Sensitivity improvement in the detection of V and Mn elements in steel using laser-induced breakdown spectroscopy with ring-magnet confinement[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(12): 2309-2314. doi: 10.1039/C4JA00144C |
[4]
|
TIAN Zh H, DONG M R, LU J D, et al. Laser-induced breakdown spectroscopy in spatial distribution of methane laminar diffusion flame[J]. Laser Technology, 2018, 42(1): 60-65(in Chinese). |
[5]
|
XIU J Sh, DONG L L, LIN Sh, et al. Research progress of laser induced breakdown spectroscopy and other atomic spectroscopy in engine oildetection[J]. Laser Technology, 2018, 42(4): 505-510(in Chinese). |
[6]
|
BHATT B, ANGEYO K H, DEHAYEM-KAMADJEU A. LIBS development methodology for forensic nuclear materials analysis[J]. Analytical Methods, 2018, 10(7): 791-798. doi: 10.1039/C7AY02520C |
[7]
|
LI X, WANG Z, FU Y, et al. Application of a spectrum standardization method for carbon analysis in coal using laser-induced breakdown spectroscopy (LIBS)[J]. Applied Spectroscopy, 2014, 68(9): 955-962. doi: 10.1366/13-07345 |
[8]
|
ZHU Y Q, ZHONG X, HE Y, et al. Measurement of alkali content in Zhundong coal after chemical fractionation treatment by LIBS method[J]. Laser Technology, 2017, 41(1): 101-105(in Chinese). |
[9]
|
LI X, YANG S, FAN R, et al. Discrimination of soft tissues using laser-induced breakdown spectroscopy in combination with k nearest neighbors (kNN) and support vector machine (SVM) classifiers[J]. Optics and Laser Technology, 2018, 102: 233-239. doi: 10.1016/j.optlastec.2018.01.028 |
[10]
|
LIU F, YE L, PENG J, et al. Fast detection of copper content in rice by laser-induced breakdown spectroscopy with uni-and multivariate analysis[J]. Sensors, 2018, 18(3):705. |
[11]
|
VELIOGLU H M, SEZER B, BILGE G, et al. Identification of offal adulteration in beef by laser induced breakdown spectroscopy (LIBS)[J]. Meat Science, 2018, 138: 28-33. doi: 10.1016/j.meatsci.2017.12.003 |
[12]
|
CHEN L, YOU L B, LUO X F, et al. Detection of Cd in table salt by LIBS technology[J]. Laser Technology, 2019, 43(1): 6-10(in Chinese). |
[13]
|
OTTESEN D K, BAXTER L L, RADZIEMSKI L J, et al. Laser spark emission spectroscopy for in situ, real-time monitoring of pulverized coal particle composition[J]. Energy and Fuels, 1991, 5(2): 304-312. doi: 10.1021/ef00026a014 |
[14]
|
YAO Sh Ch, LU J D, DONG M R, et al. Simultaneous measurements of coal ash composition by laser-induced breakdown spectro-scopy in different optical collection[J]. Proceedings of the CSEE, 2013, 33(11): 54-60(in Chinese). |
[15]
|
ZHANG X, LU J D, PAN G, et al. Investigation on laser-induced coal particle flow plasma properties acquired with different collection angles[J]. Spectroscopy and Spectral Analysis, 2013, 33(6): 1473-1476(in Chinese). |
[16]
|
BAI K J, TIAN H Ch, YAO Sh Ch, et al. Influence of laser energy on measurement of unburned carbon in fly ash particle flow[J]. Spectroscopy and Spectral Analysis, 2014, 34(5): 1407-1411(in Chinese). |
[17]
|
ZHENG J P, YIN K J, ZHANG B, et al. Study of laser energy in multi-element detection of pulverized coal flow with laser-induced breakdown spectroscopy[J]. Spectroscopy and Spectral Analysis, 2014, 34(1): 221-225(in Chinese). |
[18]
|
BIAN J T, YIN K J, YAO Sh Ch, et al. Quantitative analysis of unburned carbon in fly ash by laser-induced breakdown spectroscopy in different atmosphere[J]. Laser & Optoelectronics Progress, 2016, 53(4): 43002(in Chinese). |
[19]
|
YAO S, XU J, DONG X, et al. Optimization of laser-induced breakdown spectroscopy for coal powder analysis with different particle flow diameters[J]. Spectrochimica Acta, 2015, B110: 146-150. |
[20]
|
YAO S, ZHAO J, XU J, et al. Optimizing the binder percentage to reduce matrix effects for the LIBS analysis of carbon in coal[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(4): 766-772. doi: 10.1039/C6JA00458J |
[21]
|
DONG M, LU J, YAO S, et al Application of LIBS for direct determination of volatile matter content in coal[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(11): 2183-2188. doi: 10.1039/c1ja10109a |
[22]
|
YAO S, LU J, ZHENG J, et al. Analyzing unburned carbon in fly ash using laser-induced breakdown spectroscopy with multivariate calibration method[J]. Journal of Analytical Atomic Spectrometry, 2012, 27(3): 473-478. doi: 10.1039/c2ja10229c |
[23]
|
PAN G, DONG M, YU J, et al. Accuracy improvement of quantitative analysis of unburned carbon content in fly ash using laser induced breakdown spectroscopy[J]. Spectrochimica Acta, 2017, B131: 26-31. |
[24]
|
LI P, LU J D, XIE C L, et al. Influence of moisture on plasma characters of laser-induced pulverized coal[J]. Chinese Journal of Lasers, 2009, 36(4): 828-832(in Chinese). doi: 10.3788/CJL20093604.0828 |
[25]
|
PAN G, LU J, DONG M, et al. A study on the characteristics of carbon-related spectral lines from a laser-induced fly ash plasma[J]. Plasma Science and Technology, 2015, 17(8): 625-631. doi: 10.1088/1009-0630/17/8/03 |
[26]
|
LI J, LU J, LIN Z, et al. Effects of experimental parameters on elemental analysis of coal by laser-induced breakdown spectroscopy[J]. Optics and Laser Technology, 2009, 41(8): 907-913. doi: 10.1016/j.optlastec.2009.03.003 |
[27]
|
YAO S, LU J, DONG M, et al. Extracting coal ash content from laser-induced breakdown spectroscopy (LIBS) spectra by multivariate analysis[J]. Applied Spectroscopy, 2011, 65(10): 1197-1201. doi: 10.1366/10-06190 |
[28]
|
WANG Zh, YUAN T B, LUI Sh L, et al. Major elements analysis in bituminous coals under different ambient gases by laser-induced breakdown spectroscopy with PLS modeling[J]. Frontiers of Phy-sics, 2012, 7(6): 708-713. doi: 10.1007/s11467-012-0262-z |
[29]
|
WANG Zh, LI L, WEST L, et al. A spectrum standardization a-pproach for laser-induced breakdown spectroscopy measurements[J]. Spectrochimica Acta, 2012, B68: 58-64. |
[30]
|
FENG J, WANG Zh, WEST L, et al. A PLS model based on dominant factor for coal analysis using laser-induced breakdown spectro-scopy[J]. Analytical and Bioanalytical Chemistry, 2011, 400(10): 3261-3271. doi: 10.1007/s00216-011-4865-y |
[31]
|
LI X, WANG Zh, FU Y, et al. A model combining spectrum stan-dardization and dominant factor based partial least square method for carbon analysis in coal using laser-induced breakdown spectroscopy[J]. Spectrochimica Acta, 2014, B99: 82-86. |
[32]
|
LI X, LIU C R, LI Ch Y. Layer-by-layer analysis and model establishment of relationship between ultimate and industrial analysis of coal[J]. China Coal, 2017, 43(4): 99-104(in Chinese). |
[33]
|
UNNIKRISHNAN V K, NAYAK R, AITHAL K, et al. Analysis of trace elements in complex matrices (soil) by laser induced breakdown spectroscopy (LIBS)[J]. Analytical Methods, 2013, 5(5): 1294-1300. doi: 10.1039/c2ay26006a |
[34]
|
ADRAIN R S, WATSON J. Laser microspectral analysis: A review of principles and applications[J]. Journal of Physics, 1984, D17(10): 1915-1940. |
[35]
|
WOLD S, ALBANO C, DUNN W J, et al. Multivariate data analysis in chemistry[J]. Chemometrics, 1984(8):17-95. |
[36]
|
WANG H W, LIU Q. Identification of optimal subspace from PLS regression[J]. Journal of Beijing University of Aeronautics and Astronautics, 2000, 26(4): 473-476(in Chinese). |
[37]
|
SUN Y, HAO X, REN L. LIBS spectra automatic baseline correction method based on iterative morphometric weighted penalized least squares[J]. Proceedings of the SPIE, 2018, 10964:109643W. |