Advanced Search

ISSN1001-3806 CN51-1125/TN Map

Volume 44 Issue 1
Feb.  2020
Article Contents
Turn off MathJax

Citation:

Picosecond visible optical parametric amplifiers with high efficiency and energy

  • Corresponding author: YANG Feng, yangfeng@mail.ipc.ac.cn
  • Received Date: 2019-03-20
    Accepted Date: 2019-04-09
  • In order to improve conversion efficiency and output energy of a picosecond optical parametric generator/amplifier (OPG/OPA), walk-off compensation structure and special design of lens film system were used to verify the experiment. The evolution of beam quality M2 of OPA signal light at different pumping energies and the tuning output performance of OPA signal light ranging from 430nm to 680nm were studied. The results show that, when pumped by 6.9mJ at 355nm, maximum output energy of 2.7mJ at 510nm signal is obtained. The corresponding optical-optical conversion efficiency is 39.1%. Photon conversion efficiency is 56.2%. This method can effectively improve output energy and conversion efficiency of OPG/OPA. This study is helpful for the characterization of ultraviolet and deep ultraviolet crystals.
  • 加载中
  • [1]

    DU S F, ZHANG D X, SHI Y X, et al. Detection of scattered light pulses at femto-Joule level by using a picosecond BBO optical parametric amplifier[J]. Optics Communications, 2008, 281(9): 2638-2643. doi: 10.1016/j.optcom.2007.12.081
    [2]

    DU S F, ZHANG D X, SHI Y X, et al. Picosecond optical parametric amplification of simulated Raman as high peak-power source and ultra-sensitive preamplifier[J]. Optics Communications, 2008, 281(19): 5014-5018. doi: 10.1016/j.optcom.2008.06.058
    [3]

    UESUGI Y, MIZUTANI Y, KITAGAWA T. Developments of widely tunable light sources for picosecond time-resolved resonance Raman spectroscopy[J]. Review of Scientific Instruments, 1997, 68(11): 4001-4008. doi: 10.1063/1.1148373
    [4]

    TOWRIE M, PARKER A W, SHAIKH W, et al. Tunable picosecond optical parametric generator-amplifier system for time resolved Raman spectroscopy[J]. Measurement Science and Technology, 1998, 9(5): 816-823. doi: 10.1088/0957-0233/9/5/012
    [5]

    GONG J M, REN F, XUE M L, et al. A tunable broadband wavelength converter based on stimulated Raman scattering[J]. Laser Technology, 2019, 43(2): 222-226(in Chinese).
    [6]

    CHEN C T, XU Z Y, DENG D Q, et al. The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal[J]. Applied Physics Letters, 1996, 68(21): 2930-2932. doi: 10.1063/1.116358
    [7]

    WANG Sh P, WANG L, MEN Y B. Ultraviolet angle tunable by means of KBe2BO3F2[J]. Laser Technology, 2007, 31(4): 351-353(in Chinese).
    [8]

    LIU H, YAO Y Ch, HUANG C Y. Research of laser diode side-pumped all-solid-state Nd: YAG ultraviolet lasers[J]. Laser Technology, 2016, 40(2): 303-306(in Chinese).
    [9]

    ZHANG J Y, HUANG J Y, SHEN Y R, et al. Optical parametric generation and amplification in barium borate and lithium triborate crystals[J]. Journal of the Optical Society of America, 1992, B10(9): 1758-1764.
    [10]

    ZHU J F, LING W J, ZHONG X, et al. High energy picosecond optical parametric amplifier pumped by the second harmonic of a two-stage Ti: sapphire laser[J]. IEEE Journal of Quantum Electronics, 2012, 48(10): 1300-1304. doi: 10.1109/JQE.2012.2209408
    [11]

    YANG F, YAO J Y, XU H Y, et al. High efficiency and high peak power picosecond mid-infrared optical parametric amplifier based on BaGa4Se7 crystal[J]. Optics Letters, 2013, 38(19): 3903-3905. doi: 10.1364/OL.38.003903
    [12]

    CHEN C T, WU B C, JIANG A D, et al. New type ultraviolet nonlinear optical crystal BaB2O4[J]. Scientia Sinica, 1984, B7(1): 598-604.
    [13]

    CHEN C T, WU Y C, JIANG A D, et al. New nonlinear-optical crystal: LiB3O5[J]. Journal of the Optical Society of America, 1989, B6(4): 616-621.
    [14]

    HUANG J Y, ZHANG J Y, SHEN Y R, et al. High-power, widely tunable, picosecond coherent source from optical parametric amplification in barium borate[J]. Applied Physics Letters, 1990, 57(19): 1961-1963. doi: 10.1063/1.103980
    [15]

    HUANG F, HUANG L. Picosecond optical parametric amplification in β-BaB2O4[J]. IEEE Journal of Quantum Electronics, 1994, 61(15): 2601-2607.
    [16]

    SMITH A V, ARMSTRONG D J, ALFORD W J. Increased acceptance bandwidths in optical frequency conversion by use of multiple walk-off-compensating nonlinear crystals[J]. Journal of the Optical Society of America, 1998, B15(1): 122-141.
    [17]

    LIN X, JAMES S F, LI S, et al. Yb-fiber amplifier pumped idler-resonant PPLN optical parametric oscillator producing 90 femtose-cond pulses with high beam quality[J]. Applied Physics, 2014, B117(4): 987-993.
    [18]

    ROTHHARDT J, DEMMLER S, HÄDRICH S, et al. Thermal effects in high average power optical parametric amplifiers[J]. Optics Letters, 2013, 38(5): 763-765. doi: 10.1364/OL.38.000763
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article views(5573) PDF downloads(42) Cited by()

Proportional views

Picosecond visible optical parametric amplifiers with high efficiency and energy

    Corresponding author: YANG Feng, yangfeng@mail.ipc.ac.cn
  • 1. Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • 2. Key Laboratory of Solid State Laser, Chinese Acdamy of Sciences, Beijing 100190, China
  • 3. Key Laboratory of Functional Crystal and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • 4. University of the Chinese Academy of Sciences, Beijing 100190, China

Abstract: In order to improve conversion efficiency and output energy of a picosecond optical parametric generator/amplifier (OPG/OPA), walk-off compensation structure and special design of lens film system were used to verify the experiment. The evolution of beam quality M2 of OPA signal light at different pumping energies and the tuning output performance of OPA signal light ranging from 430nm to 680nm were studied. The results show that, when pumped by 6.9mJ at 355nm, maximum output energy of 2.7mJ at 510nm signal is obtained. The corresponding optical-optical conversion efficiency is 39.1%. Photon conversion efficiency is 56.2%. This method can effectively improve output energy and conversion efficiency of OPG/OPA. This study is helpful for the characterization of ultraviolet and deep ultraviolet crystals.

引言
  • 高能量、宽调谐、可见光范围的皮秒相干辐射光源在超弱信号检测[1-2]、时间分辨喇曼光谱[3-5]和在新型紫外/深紫外(ultraviolet/deep ultraviolet, UV/DUV)非线性光学晶体表征评估方面具有重要的应用价值[6-7]。基于非线性光学晶体的光学参量发生器/放大器(optical parametric generator/optical parametric amplifier, OPG/OPA)是产生高能量、宽调谐相干辐射的有效方法,特别是其可以填补当前激光介质[8]无法覆盖的多个波长空白带而备受关注。多种可见至中红外波段的高能量、宽调谐OPG/OPA均已被报道[9-11]β-BaB2O4(BBO)和LiB3O(LBO)是两种已获得广泛应用的非线性光学晶体,它们具有优异的物理和光学特性,从红外(infrared, IR)到深紫外(DUV)波段具有良好的光学透过性[12-13]。相比于LBO晶体,BBO晶体具有较大的非线性系数(d22=2.2pm/V),其超荧光产生及高效参量放大所需的抽运强度较低,同时所需的晶体长度较短[9]。较低的抽运强度可以有效防止实验中各种光学元件及激光薄膜的损伤,系统运行更为安全。较短的晶体长度可以有效降低群速度失配等对输出皮秒脉冲的时间展宽。再者,在相同的实验条件和晶体通光孔径下,BBO晶体较短的晶体长度及调谐所需的较小的角度调节范围使得BBO-OPG/OPA更容易获得宽的波长调谐输出范围。截止目前,已经报道过数个基于BBO晶体的可见光波段皮秒宽调谐光源[9-10, 14-15]。这些光源均采用种子加放大两级结构,第1级采用OPG/OPA,其光光转换效率很低,一般只能获得微焦量级的宽调谐光输出,所以必须再额外采用一级OPA对其进行放大,获得毫焦量级能量输出。从而使得整个光源结构复杂,并且多块晶体导致波长调谐困难。

    本文中采用10Hz,30ps,1064nm Nd: YAG激光的三倍频紫外355nm激光作为抽运光,基于单级BBO-OPG/OPA,获得了一种高效率、高能量、宽调谐皮秒可见光相干辐射光源,同时具有结构简单、调谐方便的优点。分别研究了4种BBO-OPG/OPA配置的信号光输出特性,包括有和没有走离补偿[16]的6mm和10mm长的BBO晶体对。在6.9mJ的355nm抽运能量下获得了最高2.7mJ的510nm信号光能量输出,对应的光光转换效率达39.1%,光子转换效率达56.2%。此外,在不同的抽运能量下,测量了OPG/OPA输出信号光的光束质量因子M2,并对其光束演化进行了研究。最后,实现了波长有效调谐范围从430nm~680nm的宽调谐光输出,对应输出能量范围为2.1mJ~3.4mJ。

1.   实验装置
  • 实验装置如图 1所示。锁模Nd: YAG激光器(EKSPLA:PL2251A-10)提供脉冲宽度为30ps半峰全宽(fullwidth at half maximum, FWHM),光束质量因子M2=1.4,重复频率为10Hz的1064nm基频光。1064nm基频光束被M1和M2反射进入Ⅰ类相位匹配的BBO晶体(8mm×8mm×4mm,θ=22.9°)产生二次谐波(second harmonic generation, SHG)532nm激光输出。产生的532nm和剩余的1064nm光束进入Ⅱ类相位匹配的BBO晶体(8mm×8mm×5mm,θ=38.6°)和频产生355nm激光输出。M3将产生的紫外(ultraviolet, UV)355nm光束与剩余的532nm和1064nm光束分离。实验中采用2: 1缩束望远镜(telescope, TS)将355nm光斑直径缩小到约4mm。半波片(half wave-plate, HWP)和偏振片(polarizing beam splitter, PBS)组成的功率衰减器来调节355nm激光能量。然后,355nm抽运光束被二向色镜(dichronic mirror, DM)1反射进入下一级BBO-OPG/OPA系统。OPG/OPA采用355nm激光双程抽运一对间距20cm的BBO晶体(Ⅰ类相位匹配,θ=30.6°)。两个直径4mm的光阑放置在BBO晶体对之间。它们用来对OPG/OPA产生的参量光进行空间及频率滤波。在第1程355nm抽运中,第1块BBO产生的OPG参量光在第2块BBO晶体中进行OPA放大。然后DM2对355nm抽运光高反,同时对信号光高透。分离的抽运光及信号光分别经DM3和DM4反射返回BBO晶体实现进行第2程OPA放大。此处DM3和DM4的膜系进行了特殊设计,用来将第1程抽运过程中产生的闲频光全部高透滤除,使其不参与第2程OPA放大,这样做可以有效消除第2程OPA放大过程中的光参量逆转换效应。通过精确调节DM3的位置来提供合适的时间延迟(time delay, TD),从而使得返回的355nm抽运光脉冲和信号光脉冲在时间上保持严格重叠。最后,DM5用于将放大的信号和产生的闲频光束分离。在实验中,通过能量计(energy meter, EM)(OPHIR,PE10-C,光谱范围:0.15μm~12μm,能量范围:1μJ~10mJ)和光谱仪(spectro meter, SP)(Avantes,AvsSpec,2048FT-SPM,200nm~1100nm,分辨率0.05nm)分别测量激光输出能量和波长。

    Figure 1.  Schematic diagram of visible BBO-OPG/OPA system

2.   结果与讨论
  • 首先研究了355nm激光的输出特性,通过调节1064nm与532nm的功率配比,实现了355nm激光高效和频输出。测量的355nm激光输出能量曲线如图 2所示。可以看出, 355nm输出能量随入射基频1064nm能量的增加而单调增长。在最高19.5mJ的1064nm基频能量入射下,获得了最高7.8mJ的355nm激光输出,对应的光光转换效率达40%。

    Figure 2.  THG output energy at 355nm vs. fundamental energy at 1064nm

    对于OPG/OPA系统,研究了4种类型的BBO晶体对:两个6mm长的BBO晶体(通光孔径:6mm×10mm)走离补偿及非走离补偿放置与两个10mm长的BBO晶体(通光孔径:6mm×12mm)走离补偿及非走离补偿(walk-off compensation, WOC)放置。对于上述4种类型的BBO-OPG/OPA配置,测量了波长510nm的输出信号光能量随入射355nm抽运光能量的变化曲线,如图 3所示。可以看出,在低抽运能量(小于3mJ)情形下,采用10mm晶体对的信号光输出能量略高于6mm晶体对的信号光输出能量。然而,在较高的抽运能量情形下,6mm晶体对的信号光输出能量要高于10mm晶体对的信号光输出能量。原因是在较高抽运能量下, 长晶体的光参量逆转换效应较强。此外,在每种晶体对中,由于抽运光和信号光存在空间走离,所以具有走离补偿结构BBO的信号光输出能量要高于没有进行走离补偿的信号光输出能量。最终,采用6mm长BBO晶体对走离补偿放置时,在6.9mJ的355nm抽运能量下获得了最高2.7mJ的510nm信号光输出能量,对应的光光转换效率为39.1%,光子转换效率为56.2%。因此下面的研究均采用走离补偿放置的6mm长BBO晶体对。

    Figure 3.  Output signal energy at 510nm vs. pump energy at 355nm for diffe-rent BBO crystal pairs in BBO-OPG/OPA with and without walk-off compensation

    接下来,对BBO-OPG/OPA输出信号光的光束质量因子M2进行了研究,通过激光光束分析仪(M2-200 Spiricon Inc.)测量了实验中各参量光的光束质量因子M2图 4所示为在不同抽运能量下,分别对应的355nm激光光束质量因子M2值和输出的510nm信号光的M2值的变化曲线。从图 4中可以看出,355nm抽运光的光束质量(M2 < 1.8)随输出能量的增加可以保持得较好。然而,510nm信号光的光束质量随着抽运能量的增加, M2从12.8恶化到16。同时图 4中的插图给出了在不同抽运能量下的510nm信号光的远场2-D光束轮廓。实验中信号光的光束质量较差,并且随着抽运能量的增加而逐步恶化,主要有以下3方面原因:(1)由于510nm是基于OPG/OPA产生,其本身的非共振波特性导致其光束质量较差[17]; (2)随着抽运能量的增大,晶体中的热致温度梯度产生的应力导致输出光的波前逐步发生畸变; (3)随着抽运能量的增大,OPA过程中出现的光参量逆转换效应导致输出信号光束中心能量逐步倒流回抽运光,从而输出信号光光束质量逐步发生恶化[18]。因此,为防止输出信号光在高能量抽运下的光束质量恶化,应对非线性光学晶体进行热管理,同时优化晶体长度和抽运光束参量,以降低热效应并防止逆转换的发生。进一步,使用SNLO软件模拟了BBO-三次谐振(third harmonic generation, THG)和BBO-OPG/OPA过程,考虑了光束衍射、空间离散和群延迟色散,计算得到355nm的抽运光和510nm的信号光的脉宽分别为19ps和25ps。

    Figure 4.  Beam quality of BBO-OPG/OPA 510nm signal light and 355nm pump light vs. pump energy at 355nm

    最后,通过精确同步调节两个BBO晶体的相位匹配角,研究了BBO-OPG/OPA的波长调谐输出性能,如图 5所示。从图 5a可以看出,在6.9mJ的355nm抽运能量入射下,实现了信号光在430nm~680nm范围内的连续调谐输出,430nm的输出能量达3.2mJ,680nm的输出能量达2.3mJ。其中,当信号光波长为450nm时,获得了3.4mJ的最高输出能量,对应的光光效率高达53%。图 5b所示为光谱带宽随着波长的变化曲线,可以看出, 随着信号光波长从430nm调谐到680nm,其光谱带宽从1.7nm增加到了12.6nm,随着输出波长不断接近简并点710nm,其光谱带宽显著增大。

    Figure 5.  a—BBO-OPG/OPA signal energy and efficiency vs. signal wavelength b—the measured BBO-OPG/OPA signal spectral from 430nm to 680nm

3.   结论
  • 报道了一种基于1064nm Nd: YAG皮秒激光的三倍频紫外355nm激光抽运的高效率、高能量、宽调谐可见波段皮秒BBO-OPG/OPA。通过采用走离补偿结构的6mm长BBO晶体对,在6.9mJ的355nm抽运能量下获得了最高2.7mJ的510nm信号光输出能量,对应的光光转换效率和光子转换效率分别为39.1%和56.2%,通过优化非线性光学晶体和抽运光束参量,预期可获得更高的信号光输出能量。进一步,研究了OPG/OPA输出信号光的光束质量因子M2,并分析了光束质量下降的原因。最后,实现了430nm~680nm的信号光连续调谐,对应输出能量范围为2.1mJ~3.4mJ。这种高效率、高能量、宽调谐可见波段皮秒光源可应用于时间分辨喇曼光谱,并且还可以通过倍频实现一种215nm~340nm可调谐的紫外皮秒相干辐射光源。

Reference (18)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return