[1]
|
ZOU D B, CHEN W L, DU Zh H, et al. Selection of digital filtering in the escaping ammonia monitoring with TDLAS[J].Spectroscopy and Spectral Analysis, 2012, 32(9): 2322-2326(in Chinese). |
[2]
|
LIU F D, SHAN W P, SHI X Y, et al. Reseach progress in vanadium-free catalysts for the selective catalytic reduction of NO with NH3. Chinese Journal of Catalysis, 2011, 32(7): 1113-1128(in Chinese). |
[3]
|
MA F N, CHENG W Q. The discharge status and controlling measures of nitrogen oxides of thermal power plants in China[J]. Guangzhou Chemical Industry, 2011, 39(15):57-59(in Chinese). |
[4]
|
SRIVASTAVA R K, HALL R E, KHAN S, et al. Nitrogen oxides emission control options for coal-fired electric utility boilers[J]. Air Repair, 2005, 55(9):1367-1388. |
[5]
|
ZHANG X, CAO Sh Y, GUO T X, et al. Research of methane volume fraction field reconstruction based on tunable diode laser absorption spectroscopy detection technology[J]. Laser Technology, 2018, 42(4):577-582(in Chinese). |
[6]
|
YANG B, HE G Q, LIU P J, et al. Research progress of tunable di-ode laser absorption spectroscopy for combustion diagnostics[J]. Laser Technology, 2011, 35(4):503-510(in Chinese). |
[7]
|
DONG Y H, WU Sh Q, ZHAI W, et al. Effect of modulated phase difference on TDLAS signal-to-noise ratio[J]. Laser Technology, 2013, 37(4):498-502(in Chinese). |
[8]
|
SUN K, SUR R, CHAO X, et al. TDL absorption sensors for gas temperature and concentrations in a high-pressure entrained-flow coal gasifier[J]. Proceedings of the Combustion Institute, 2013, 34(2):3593-3601. doi: 10.1016/j.proci.2012.05.018 |
[9]
|
CHAO X, JEFFRIES J B, HANSON R K. Development of laser absorption techniques for real-time, in-situ, dual-species monitoring (NO/NH3, CO/O2) in combustion exhaust[J]. Proceedings of the Combustion Institute, 2013, 34(2):3583-3592. doi: 10.1016/j.proci.2012.05.024 |
[10]
|
CHAO X, JEFFRIES J B, HANSON R K. In situ absorption sensor for NO in combustion gases with a 5.2μm quantum-cascade laser[J]. Proceedings of the Combustion Institute, 2011, 33(1):725-733. doi: 10.1016/j.proci.2010.05.014 |
[11]
|
YING H E, ZHANG Y J, YOU K, et al. Study on hydrogen fluoride at high temperature detection method with temperature correction based on laser technology[J]. Spectroscopy & Spectral Analysis, 2017, 37(3):964-970.. |
[12]
|
NIE W, KAN R F, XU Zh Y, et al. Measuring spectral parameters of water vapor at low temperature based on tunable diode laser absorption spectroscopy.Acta Physica Sinica, 2017, 66(20):91-96. (in Chinese). |
[13]
|
ZHANG L F, WANG F, YU L B, et al. The research for trace ammonia escape monitoring system based on tunable diode laser absorption spectroscopy[J].Spectroscopy and Spectral Analysis, 2015, 35(6): 1639-1642(in Chinese). |
[14]
|
MA Y, HE Y, ZHANG L, et al. Ultra-high sensitive acetylene detection using quartz-enhanced photoacoustic spectroscopy with a fiber amplified diode laser and a 30.72kHz quartz tuning fork[J]. Applied Physics Letters, 2017, 110(3):031107. doi: 10.1063/1.4974483 |
[15]
|
TU X H, LIU W Q, ZHANG Y J, et al. Second-harmonic detection with tunable diode laser absorption spectroscopy of CO and CO2 at 1.58μm[J]. Spectroscopy and Spectral Analysis, 2006, 26(7): 1190-1194(in Chinese). |
[16]
|
LI C L, WU Y, QIU X B, et al. Pressure-dependent detection of carbon monoxide employing wavelength modulation spectroscopy using a herriott-type cell[J]. Applied Spectroscopy, 2017, 71(5): 809-816. doi: 10.1177/0003702816682194 |
[17]
|
LI N, QIU X B, WEI Y B, et al. A portable low-power integrated current and temperature laser controller for high-sensitivity gas sensor applications[J]. Review of Scientific Instruments, 2018, 89(10): 103103. doi: 10.1063/1.5044230 |
[18]
|
YE W L, ZHENG Ch T, WANG Y D. Stability measurement and temperature compensation of mid-infrared methane detection device[J]. Acta Optica Sinica, 2014, 34(3): 0323003(in Chinese). doi: 10.3788/AOS201434.0323003 |
[19]
|
ALLAN D W. Statistics of atomic frequency standards[J].Proceedings of the IEEE, 1966, 54(2): 221-230. doi: 10.1109/PROC.1966.4634 |
[20]
|
DANG J M, HU H Y, SONG F, et al. An early fire gas sensor based on 2.33μm DFB laser[J]. Infrared Physics and Technology, 2018, 92(5):84-89. |