[1]
|
DONG J, ZHANG Zh L, ZHENG H R, et al. Recent progress on plasmon-enhanced fluorescence[J]. Nanophotonics, 2015, 4(1):472-490. |
[2]
|
CHE Y L, CAO X L, LI Q Sh. Preparation and photoluminescence of nano-porous oxidized silicon[J]. Laser Technology, 2008, 32(6):605-607(in Chinese). |
[3]
|
XU L M, ZHANG Zh L, ZHENG H R, et al. Physical mechanisms of fluorescence enhancement on metal surface[J]. Chinese Journal of Luminescence, 2009, 30(3):8-12(in Chinese). |
[4]
|
DREXHAGE K H. Influence of a dielectric interface on fluorescence decay time[J]. Journal of Luminescence, 1970, 1/2:693-701. doi: 10.1016/0022-2313(70)90082-7 |
[5]
|
GERSTEN J, NITZAN A. Spectroscopic properties of molecules interacting with small dielectric particles[J]. Journal of Chemical Phy-sics, 1981, 75(3):1139-1152. doi: 10.1063/1.442161 |
[6]
|
WEITZ D A, GAROFF S, GERSTEN J I, et al. The enhancement of Raman scattering, resonance Raman scattering and fluorescence from molecules adsorbed on a rough silver surface[J]. Journal of Chemical Physics, 1983, 78(9):5324-5338. doi: 10.1063/1.445486 |
[7]
|
GEDDES C D, LAKOWICZ J R. Metal-enhanced fluorescence[J]. Journal of Fluorescence, 2002, 12(2):121-129. doi: 10.1023/A:1016875709579 |
[8]
|
LAKOWICZ J R, SHEN Y B, D'AURIA S, et al. Radiative decay engineering:2. Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer[J]. Analytical Biochemistry, 2002, 301(2):261-277. doi: 10.1006/abio.2001.5503 |
[9]
|
LÜ G W, LI W Q, ZHANG T Y, et al. Plasmonic-enhanced molecular fluorescence within isolated bowtie nano-apertures[J]. American Chemical Society Nano, 2012, 6(2):1438-1448. |
[10]
|
LÜ G W, SHEN H M, CHENG Y Q, et al. Advances in localized surface plasmon enhanced fluorescence[J]. Science Bulletin, 2015, 60(33):3169-3179(in Chinese). |
[11]
|
DONG J, ZHENG H R, LI X Q, et al. Surface-enhanced fluorescence from silver fractallike nanostructures decorated with silver nanoparticles[J]. Applied Optics, 2011, 50(31):123-126. doi: 10.1364/AO.50.00G123 |
[12]
|
ZHENG H R, DONG J, ZHANG Zh L, et al. Controlling on the luminescence property of RE ionic and molecular optical centers with nanostructure system[J]. Science Bulletin, 2015, 60(10):899-911(in Chinese). doi: 10.1007/s11434-015-0785-0 |
[13]
|
CUI X Q, TAWA K, HORI H, et al. Tailored plasmonic gratings for enhanced fluorescence detection and microscopic imaging[J]. Advanced Functional Materials, 2010, 20(4):546-553. doi: 10.1002/adfm.v20:4 |
[14]
|
HAO Q, DU D Y, WANG C X, et al. Plasmon-induced broadband fluorescence enhancement on Al-Ag bimetallic substrates[J]. Scientific Reports, 2014, 4:6014. |
[15]
|
TIAN R, YAN D P, LI Ch Y, et al. Surface-confined fluorescence enhancement of au nanoclusters anchoring to a two-dimensional ultrathin nanosheet toward bioimaging[J]. Nanoscale, 2016, 8(18):9815-9821. doi: 10.1039/C6NR01624C |
[16]
|
YANG J, SONG J T, HU W, et al. Fabrication of fluorescence enhancement of quantum dots on a gold colloid formed film for oligonucleotide DNA detection[J]. Analytical Methods, 2017, 9(3):434-442. doi: 10.1039/C6AY02514E |
[17]
|
BROLO A G, KWOK S C, MOFFITT M G, et al. Enhanced fluorescence from arrays of nanoholes in a gold film[J]. Journal of the American Chemical Society, 2005, 127(42):14936-14941. doi: 10.1021/ja0548687 |
[18]
|
ZHANG Zh L, ZHENG H R, LIU M C, et al. Surface enhanced fluorescence of Rh6G with gold nanohole arrays[J]. Journal of Nanoscience and Nanotechnology, 2011, 11(11):9803-9807. doi: 10.1166/jnn.2011.5305 |
[19]
|
ZHANG Q W, WU L, WONG T I, et al. Surface plasmon-enhanced fluorescence on aunanohole array for prostate-specific antigen detection[J]. International Journal of Nanomedicine, 2017, 12:2307-2314. doi: 10.2147/IJN |
[20]
|
HUNG Y J, SMOLYANINOV I I, DAVIS C C, et al. Fluorescence enhancement by surface gratings[J]. Optics Express, 2006, 14(22):10825-10830. doi: 10.1364/OE.14.010825 |
[21]
|
CHOU R Y, LI G T, CHENG Y Q, et al. Surface enhanced fluorescence by metallic nano-apertures associated with stair-gratings[J]. Optics Express, 2016, 24(17):19567-19573. doi: 10.1364/OE.24.019567 |
[22]
|
JIANG Y, WANG H Y, SUN H B, et al. Surface plasmon enhanced fluorescence of dye molecules on metal grating films[J]. Journal of Physical Chemistry, 2011, C115(25):12636-12642. |
[23]
|
YIN Y, SUN Y, YU M, et al. ZnO Nanorod array grown on ag layer:a highly efficient fluorescence enhancement platform[J]. Scientific Reports, 2015, 5:8152. doi: 10.1038/srep08152 |
[24]
|
SINGH D P, KUMAR S, SINGH J P. Morphology dependent surface enhanced fluorescence study on silver nanorod arrays fabricated by glancing angle deposition[J]. Royal Society of Chemistry Advances, 2015, 5(40):31341-31346. |
[25]
|
MEI Zh, TANG L. Surface plasmon coupled fluorescence enhancement based on ordered gold nanorod array biochip for ultra-sensitive DNA analysis[J]. Analytical Chemistry, 2017, 89(1):633-639. doi: 10.1021/acs.analchem.6b02797 |
[26]
|
ZHONG B B, ZU X H, YI G B, et al. Fluorescence enhancement of the conjugated polymer films based on well-ordered Au nanoparticle arrays[J]. Journal of Nanoparticle Research, 2016, 18(9):281. doi: 10.1007/s11051-016-3588-6 |
[27]
|
CENTENO A, XIE F. An electromagnetic study of metal enhanced fluorescence due to immobilized nanoparticle arrays on glass substrates[J]. Materials Today Proceedings, 2015, 2(1):94-100. doi: 10.1016/j.matpr.2015.04.013 |
[28]
|
ZHANG M D, LI C X, WANG C, et al. Polarization dependence of plasmon enhanced fluorescence on Au nanorod array[J]. Applied Optics, 2017, 56(3):375-379. doi: 10.1364/AO.56.000375 |
[29]
|
SÁNCHEZ-GINZÁLEZ Á, CORNI S, MENNUCCI B. Surface-enhanced fluorescence within a metal nanoparticle array:the role of solvent and plasmon couplings[J]. Journal of Physical Chemistry, 2011, C115(13):5450-5460. |
[30]
|
YANG B J, LU N, QI D P, et al. Tuning the intensity of metal enhanced fluorescence by engineering silver nanoparticle array[J]. Small, 2010, 6(9):1038-1043. doi: 10.1002/smll.200902350 |
[31]
|
MING T, ZHAO L, YANG Z, et al. Polarization dependence of plasmon-enhanced fluorescence on single gold nanorods[J]. Nano Letters, 2009, 9(11):3896-3903. doi: 10.1021/nl902095q |
[32]
|
CORRIGAN T D, GUO S, PHANEUF R J, et al. Enhanced fluorescence from periodic arrays of silver nanoparticles[J]. Journal of Fluorescence, 2005, 15(5):777-784. doi: 10.1007/s10895-005-2987-3 |
[33]
|
RAETHER H. Surface plasmons on smooth and rough surfaces and on gratings[M]. Berlin/Heidelberg, Germany:Springer, 1998:4-37. |
[34]
|
ZHANG Z Y, WANG H Y, SUN H B, et al. Surface plasmon-modulated fluorescence on 2-D metallic silver gratings[J]. IEEE Photonics Technology Letters, 2015, 27(8):821-823. doi: 10.1109/LPT.2015.2392431 |
[35]
|
EBBESEN T W, LEZEC H J, WOLFF P A, et al. Extraordinary optical transmission through subwavelength hole arrays[J]. Nature, 1998, 391(6668):667-669. doi: 10.1038/35570 |
[36]
|
ENOCH S, POPOV E, NEVIERE M, et al. Enhanced light transmission by hole arrays[J]. Journal of Optics, 2002, A4(5):83-87. |
[37]
|
GUO P F, WU Sh, XIAO Sh J, et al. Fluorescence enhancement by surface plasmon polaritons on metallic nanohole arrays[J]. Journal of Physical Chemistry Letters, 2010, 1(1):315-318. |
[38]
|
WANG Y, WU L, ZHOU X D, et al. Incident-angle dependence of fluorescence enhancement and biomarker immunoassay on gold nanohole array[J]. Sensors and Actuators, 2013, B186:205-211. |
[39]
|
PANG Y T, CHANDRASEKAR R. Cylindrical and spherical membranes of anodic aluminum oxide with highly ordered conical nanohole arrays[J]. Natural Science, 2015, 7(5):232-237. doi: 10.4236/ns.2015.75026 |
[40]
|
YAN X Q, SUN Y, ZHENG H R, et al. Fluorophore enhancement of Rh6G from silver nanoparticles modulated with porous anodic alumina template[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2012, 42(9):907-913(in Chinese). |
[41]
|
DAMM S, LORDAN F, MURPHY A, et al. Application of AAO matrix in aligned gold nanorod array substrates for surface enhanced fluorescence and raman scattering[J]. Plasmonics, 2014, 9(6):1371-1376. doi: 10.1007/s11468-014-9751-y |
[42]
|
CHEN H, OHODNICKI P, BALTRUS J P, et al. High-temperature stability of silver nanoparticles geometrically confined in the nanoscale pore channels of anodized aluminum oxide for SERS in harsh environment[J]. Royal Society of Chemistry Advances, 2016, 6(90):86930-86937. |
[43]
|
ZHAO W N, WU Y Y, LIU X G, et al. The fabrication of polymer-nanocone-based 3-D Au nanoparticle array and its SERS performance[J].Applied Physics, 2017, A123(1):45. |
[44]
|
JRUBIM J C, GUTZ G R, SALA O. Surface enhanced Raman scattering (SERS) and fluorescence spectra from mixed copper(Ⅰ)/pyridine/iodide complexes on a copper electrode[J]. Chemical Physics Letters, 1984, 111(1/2):117-122. |
[45]
|
DONG J, LI X Q, LI J, et al. Fluorescence enhancement from the fractal Ag nanostructured surface[J].Journal of Optoelectronics·Laser, 2012, 23(6):1126-1129(in Chinese). |
[46]
|
BABAK N, ELSAYED M A. Preparation and growth mechanism of gold nanorods(NRs) using seed-mediated growth method[J]. Chemistry of Materials, 2003, 15(10):1957-1962. doi: 10.1021/cm020732l |
[47]
|
LI P H, LI Y, YU X F, et al. Evaporative self-assembly of gold nanorods into macroscopic 3-D plasmonic superlattice arrays[J]. Advanced Materials, 2016, 28(13):2511-2517. doi: 10.1002/adma.201505617 |
[48]
|
YIN N Q, JIANG T T, YU J, et al. Study of gold nanostar@SiO2@CdTeS quantum dots@SiO2with enhanced-fluorescence and photothermal therapy multifunctional cell nanoprobe[J]. Journal of Nanoparticle Research, 2014, 16(3):2306. doi: 10.1007/s11051-014-2306-5 |
[49]
|
ZHU J, WANG J F, LI J J, et al. Specific detection of carcinoembryonic antigen based on fluorescence quenching of Au-Ag core-shell nanotriangle probe[J]. Sensors and Actuators, 2016, B233:214-222. |
[50]
|
WANG X, RUDITSKIY A, XIA Y N. Rational design and synthesis of noble-metal nanoframes for catalytic and photonic applications[J]. National Science Review, 2016, 3(4):520-533. |
[51]
|
WEITZ D A, GAROFF S, HANSON C D, et al. Fluorescent lifetimes of molecules on silver-island films[J]. Optics Letters, 1982, 7(2):89-91. doi: 10.1364/OL.7.000089 |
[52]
|
ZHU J, ZHU K, HUANG L Q. Using gold colloid nanoparticles to modulate the surface enhanced fluorescence of Rhodamine B[J]. Physics Letters, 2008, A372(18):3283-3288. |
[53]
|
ZHU J, ZHANG F, LI J J, et al. The effect of nonhomogeneous silver coating on the plasmonic absorption of Au-Ag core-shell nanorod[J]. Gold Bull, 2014, 47(1/2):47-55. |
[54]
|
CHEN K, LIN C C, VELA J, et al. Multishell Au/Ag/SiO2 nanorods with tunable optical properties as single particle orientation and rotational tracking probes[J]. Analytical Chemistry, 2015, 87(8):4096-4099. doi: 10.1021/acs.analchem.5b00604 |
[55]
|
LIAW J W, WU H Y, HUANG C C, et al. Metal-enhanced fluore-scence of silver island associated with silver nanoparticle[J]. Nanoscale Research Letters, 2016, 11(26):1-9. |
[56]
|
MATTEI G, MAZZOLDI P, BERNAS H. Metal nanoclusters for optical properties[M]. Berlin, Germary:Topics in Applied Physics, 1995:287-316. |
[57]
|
DONG J. Study on surface enhancement fluorescence effect of multimodal nanostructured metal substrate[D].Xi'an: Shaanxi Normal University, 2012: 1-10(in Chinese). |
[58]
|
ASLAN K, HOLLEY P, GEDDES C D. Metal-enhanced fluorescence from silver nanoparticle-deposited polycarbonate substrates[J]. Journal of Materials Chemistry, 2006, 16(27):2846-2852. doi: 10.1039/b604650a |
[59]
|
LI J, WANG Z Y, GRYCZYNSKI I, et al. Silver nanoparticle enhanced fluorescence in microtransponder-based immuno-and DNA hybridization assays[J]. Analytical & Bioanalytical Chemistry, 2010, 398(5):1993-2001. |
[60]
|
MISHRA H, ZHANG Y, GEDDES C D. Metal enhanced fluorescence of the fluorescent brightening agent Tinopal-CBX near silver island film[J]. Dyes and Pigments, 2011, 91(2):225-230. doi: 10.1016/j.dyepig.2011.03.005 |
[61]
|
ZHANG Zh L, ZHENG H R, XU L M, et al. Fluorescence enhancement of mechanically polished metallic surfaces to acridine orange in a sandwiched configuration[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2010, 40(3):1799-1803. |
[62]
|
ZHANG J, FU Y, MEI Y P, et al. Fluorescent metal nanoshell probe to detect single miRNA in lung cancer cell[J]. Analytical Chemistry, 2010, 82(11):4464-4471. doi: 10.1021/ac100241f |
[63]
|
LI J F, HUANG Y F, DING Y, et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy[J]. Nature, 2010, 464(7287):392-395. doi: 10.1038/nature08907 |
[64]
|
DONG J, ZHENG H R, YAN X Q, et al. Fabrication of flower-like silver nanostructure on the Al substrate for surface enhanced fluorescence[J]. Applied Physics Letters, 2012, 100(5):051112. doi: 10.1063/1.3681420 |
[65]
|
DONG J, YE Y Y, ZHANG W H, et al. Preparation of Ag/Au bimetallic nanostructures and their application in surface enhanced fluorescence[J]. Luminescence, 2015, 30(7):1090-1093. doi: 10.1002/bio.v30.7 |
[66]
|
HAMON C, SANZ-ORTIZ M N, MODIN E, et al. Hierarchical organization and molecular diffusion in gold nanorod/silica supercrystal nanocomposites[J]. Nanoscale, 2016, 8(15):7914-7922. doi: 10.1039/C6NR00712K |
[67]
|
DONG J, QU S X, ZHENG H R, et al. Simultaneous SEF and SERRS from silver fractal-like nanostructure.Sensors and Actuators, 2014, B191:595-599. |
[68]
|
XU S P, CAO Y X, ZHOU J, et al. Plasmonic enhancement of fluorescence on silver nanoparticle films[J]. Nanotechnology, 2011, 22(27):275715-275722. doi: 10.1088/0957-4484/22/27/275715 |
[69]
|
MA N, TANG F, WANG X Y, et al. Tunable metal-enhanced fluorescence by stimuli-responsive polyelectrolyte interlayer films[J]. Macromolecular Rapid Communications, 2011, 32(7):587-592. doi: 10.1002/marc.v32.7 |
[70]
|
ZHANG Y X, ASLAN K, GEDDES C D, et al. Low temperature metal-enhanced fluorescence[J]. Journal of Fluorescence, 2007, 17(6):627-631. doi: 10.1007/s10895-007-0235-8 |
[71]
|
LÜ F T, ZHENG H R, FANG Y. Studies of surface-enhanced fluorescence[J]. Progress in Chemistry, 2007, 19(2/3):256-266(in Chinese). |
[72]
|
PASCAL A, PALASH B, LUKAS N. Enhancement and quenching of single-molecule fluorescence[J]. Physical Review Letters, 2006, 96(11):113002. doi: 10.1103/PhysRevLett.96.113002 |
[73]
|
ABADEER N S, BRENNAN M R, WILSON W L, et al. Distance and plasmon wavelength dependent fluorescence of molecules bound to silica-coated gold nanorods[J].American Chemical Society Nano, 2014, 8(8):8392-8406. |
[74]
|
LI Y Q, GUAN L Y, ZHANG H L, et al. Distance-dependent metal-enhanced quantum dots fluorescence analysis in solution by capillary electrophoresis and its application to DNA detection[J]. Analytical Chemistry, 2011, 83(11):4103-4109. doi: 10.1021/ac200224y |
[75]
|
GANDRA N, PORTZo C, TIAN L M, et al. Probing distance-dependent plasmon-enhanced near-infrared fluorescence using polyelectrolyte multilayers as dielectric spacers[J]. Angewandte Chemie International Edition, 2013, 53(3):866-870. |
[76]
|
REN Z B, LI X Y, GUO J X, et al. Solution-based metal enhanced fluorescence with gold and gold/silver core-shell nanorods[J]. Optics Communications, 2015, 357:156-160. doi: 10.1016/j.optcom.2015.08.071 |
[77]
|
GUO J X. Study on surface enhancement spectral effect of gold nanorods and their core-shell structures[D]. Xi'an: Shaanxi Normal University, 2016: 39-57(in Chinese). |
[78]
|
STÖBER W, FINK A, BOHN E. Controlled growth of monodisperse silica spheres in the micron size range[J]. Journal of Colloid & Interface Science, 1968, 26(1):62-69. |
[79]
|
ZHAI Y R, MENG L Y, XU L J, et al. Strong fluorescence enhancement with silica-coated Au nanoshell dimers[J]. Plasmonics, 2017, 12(2):263-269. doi: 10.1007/s11468-016-0259-5 |
[80]
|
GWO S J, CHEN H Y, LIN M H, et al. Nanomanipulation and controlled self-assembly of metal nanoparticles and nanocrystals for plasmonics[J]. Chemical Society Reviews, 2016, 45(20):5672-5716. doi: 10.1039/C6CS00450D |
[81]
|
PENG B, LI Zh P, MUTLUGUN E, et al. Quantum dots on vertically aligned gold nanorod monolayer:plasmon enhanced fluorescence[J]. Nanoscale, 2014, 6(11):5592-5598. doi: 10.1039/C3NR06341K |
[82]
|
HAMON C, POSTIC M, MAZARI E, et al. Three-dimensional self-assembling of gold nanorods with controlled macroscopic shape and local smectic B order[J]. American Chemical Society Nano, 2012, 6(5):4137-4146. |
[83]
|
CHEN A Q, DEPRINCE A E, DEMORTIèRE A, et al. Self-assembled large Au nanoparticle arrays with regular hot spots for SERS[J]. Small, 2011, 7(16):2365-2371. doi: 10.1002/smll.v7.16 |
[84]
|
AHIJADO-GUZMÁN R, GONZÁLEZ-RUBIO G, GIZQUIERDO J, et al. Intracellular pH-induced tip-to-tip assembly of gold nanorods for enhanced plasmonic photothermal therapy[J]. American Chemical Society Omega, 2016, 1(3):388-395. |
[85]
|
CHEN X, ZHOU D L 1, XU W, et al. Fabrication of Au-Ag nanocage@NaYF4@NaYF4:Yb, Er core-shell hybrid and its tunable upconversion enhancement[J]. Scientific Reports, 2017, 7:41079. doi: 10.1038/srep41079 |
[86]
|
KANG F W, HE J J, SUN T Y, et al. Plasmonic dual-enhancement and precise color tuning of gold nanorod@SiO2 coupled core-shell-shell upconversion nanocrystals[J]. Advanced Functional Materials, 2017, 27(36):1701842(1-11). |
[87]
|
ZHUANG Y, MA Ch Q, WANG X H, et al. Simultaneous determination of three antibiotics based on synchronous fluorescence combined with neural network[J]. Laser Technology, 2017, 41(4):489-493(in Chinese). |
[88]
|
LI J L, GU M. Surface plasmonic gold nanorods for enhanced two-photon microscopic imaging and apoptosis induction of cancer cells[J]. Biomaterials, 2010, 31(36):9492-9498. doi: 10.1016/j.biomaterials.2010.08.068 |
[89]
|
JI X F, XIAO Ch Y, LAU W F, et al. Metal enhanced fluorescence improved protein and DNA detection by zigzag Ag nanorod arrays[J]. Biosensors and Bioelectronics, 2016, 82:240-247. doi: 10.1016/j.bios.2016.04.022 |
[90]
|
HIRSCH L R, STAFFORD R J, BANKSON J A, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(23):13549-13554. doi: 10.1073/pnas.2232479100 |
[91]
|
CHEN H X, QI F J, ZHOU H J, et al. Fe3O4@Au nanoparticles as a means of signal enhancement in surface plasmon resonance spectroscopy for thrombin detection[J]. Sensors and Actuators, 2015, B212:505-511. |
[92]
|
ZHOU Y, MA Z F. A novel fluorescence enhanced route to detect copper(Ⅱ) by click chemistry-catalyzed connection of Au@SiO2 and carbon dots[J]. Sensors and Actuators, 2016, B233:426-430. |
[93]
|
UMH H N, SHIN H H, YI J, et al. Fabrication of gold nanowires (GNW) using aluminum anodic oxide (AAO) as a metal-ion sensor[J]. Korean Journal of Chemical Engineering, 2015, 32(2):299-302. doi: 10.1007/s11814-014-0201-5 |
[94]
|
CHEN Zh, LI H, JIA W C, et al. Bivalent aptasensor based on silver enhanced fluorescence polarization for rapid detection of lactoferrin in milk[J]. Analytical Chemistry, 2017, 89(11):5900-5908. doi: 10.1021/acs.analchem.7b00261 |
[95]
|
BASU T, RANA K, DAS N, et al. Selective detection of Mg2+ ions via enhanced fluorescence emission using Au-DNA nanocomposites[J]. Beilstein Journal of Nanotechnology, 2017, 8:762-771. doi: 10.3762/bjnano.8.79 |
[96]
|
FU Y, LAKOWICZ J R. Single-molecule studies of enhanced fluorescence on silver island films[J]. Plasmonics, 2007, 2(1):1-4. |
[97]
|
DEEP P, JUAN D T, HERVÉ R, et al. Gold nanoparticles for enhanced single molecule fluorescence analysis at micromolar concentration[J]. Optics Express, 2013, 21(22):27338-27343. doi: 10.1364/OE.21.027338 |
[98]
|
ZHANG W C, CALDAROLA M, PRADHAN B, et al. Gold nanorod enhanced fluorescence enables single-molecule electrochemistry of methylene blue[J]. Angewandte Chemie International Edition, 2017, 56(13):3566-3569. doi: 10.1002/anie.201612389 |
[99]
|
FUJIKI A, UEMURA T, KUWAHARA Y, et al. Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diods[J]. Applied Physics Letters, 2010, 96(4):043307. doi: 10.1063/1.3271773 |
[100]
|
CHO N K, LEE S M, KANG S J, et al. Enhanced quantum-dot light-emitting diodes using gold nanorods[J]. Journal of the Korean Physical Society, 2015, 67(9):1667-1671. doi: 10.3938/jkps.67.1667 |
[101]
|
CHEN Ch, CHEN J W, ZHANG J, et al. Ag-decorated localized surface plasmon-enhanced ultraviolet electroluminescence from ZnO quantum dot-based/GaN heterojunction diodes by optimizing MgO interlayer thickness[J]. Nanoscale Research Letters, 2016, 11(1):480. doi: 10.1186/s11671-016-1701-5 |