[1]
|
TOLLETT B. Welding with laser powder fusion and plasma wire feed systems[J]. Engine Yearbook, 2003, 10(3):84-89. |
[2]
|
MONTAZERI M, GHAINI F M.The liquation cracking behavior of In738LC superalloy during low power Nd:YAG pulsed laser welding[J].Materials Characterization, 2012, 67(6):65-73. |
[3]
|
GAO X L. Welding process manual[M]. Beijing:Machinery Industry Press, 1992:42-43(in Chinese). |
[4]
|
AO S S, LUO Zh, SHAN P. Microstructure of inconel 601 nickel-based superalloy laser welded joint[J]. The Chinese Journal of Nonferrous Metals 2015, 25(8):2099-2107(in Chinese). |
[5]
|
GUO L, WANG F, ZHANG Q M, et al. Research of techniques of laser-MIG hybrid welding of 304 stainless steel[J]. Laser Techology, 2013, 37(6):781-785(in Chinese). |
[6]
|
WANG D D, YU Sh F, LIU Y. Effect of laser power on performance of dissimilar joints between Cu-Ni coated low carbon steel and stainless steel[J]. Laser Techology, 2016, 40(6):806-809(in Chinese). |
[7]
|
LEI Zh L, DONG Zh J, CHEN Y B, et al. Effect of heat input on the microstructures and mechanical properties of laser welded Ti2AlNb alloys[J].Rare Metal Materials and Engineering, 2014, 43(3)579-584(in Chinese). |
[8]
|
YAN F, WANG Ch M, HU X Y. Study of the process of laser welding for low expansion superalloy GH909[J]. Electric Welding Machine, 2014, 44(9):6-9(in Chinese). |
[9]
|
KELLY T J. Welding metallurgy of investment cast nickel-based superalloy[C]//Proceedings from Weldability of Materials Conference. New York, USA: ACM Press, 1990: 151-157. |
[10]
|
LINGENFELTER A C. Welding metallurgy of nickel alloys in gas turbine components[C]//Proceedings from Materials Solutions'97 on Joining and Repair of Gas Turbine Components. New York, USA: IEEE, 1997: 3-6. |
[11]
|
HENDERSON M B, ARRELL D, LARSSON R, et al. Nickel based superalloy welding practices for industrial gas turbine applications[J].Science and Technology of Welding and Joining, 2004, 9(1):13-21. doi: 10.1179/136217104225017099 |
[12]
|
DYE D, HUNZIKER O, REED R C. Numerical analysis of the weldability of superalloys[J]. Acta Materialia, 2001, 49(4):683-697. doi: 10.1016/S1359-6454(00)00361-X |
[13]
|
OJO O A, CHATURVEDI M C. On the role of liquated γ' precipitates in weld heat affected zone microfissuring of a nickel-based superalloy[J]. Materials Science and Engineering, 2005, A403(1/2):77-86. |
[14]
|
OJO O A, RICHARDS N L, CHATURVEDI M C. Liquation of various phases in HAZ during welding of cast Inconel 738LC[J]. Materials Science and Technology, 2004, 20(8):1027-1034. doi: 10.1179/026708304225019948 |
[15]
|
OJO O A, RICHARDS N L, CHATURVEDI M C. Contribution of constitutional liquation of gamma prime precipitate to weld HAZ cracking of cast Inconel 738 superalloy[J]. Scripta Materialia, 2004, 50(5):641-646. doi: 10.1016/j.scriptamat.2003.11.025 |
[16]
|
PANG M, YU G, WANG H H, et al.Microstructure and mechanical properties of K418 and 42CrMo dissimilar metal laser welding[J]. Transactions of the China Welding Institution, 2008, 29(2):85-88(in Chinese). |
[17]
|
SEKHAR N C, REED R C. Power beam welding of thick section nickelbase superal loys[J].Science and Technology of Welding and Joining, 2002, 7(2):77-87. doi: 10.1179/136217102225002628 |
[18]
|
LIU X B, YU G, PANG M, et al. Laser welding of superalloy K418 to 42CrMo steel[J]. The Chinese Journal of Nonferrous Metals, 2008, 18(3):444-448(in Chinese). |