HTML
-
由于Nd: YVO4晶体具有较大的发射截面,且荧光寿命较短,因此特别适合作为高重频、窄脉冲固体激光器的增益介质。增益介质对抽运功率的吸收满足如下关系:
式中,P0代表注入抽运功率,Pab表示增益介质吸收的抽运功率,α为吸收系数,l为增益介质吸收长度。对于掺杂原子数分数为0.005的Nd: YVO4晶体,其吸收系数约为15.8cm-1@808nm;而对于、掺杂原子数分数为0.01的Nd: YVO4晶体,其吸收系数约为31.4cm-1@808nm。由此可知,选用长度为3mm的、掺杂原子数分数为0.005的Nd: YVO4晶体或长度为1.5mm的、掺杂原子数分数为0.01的Nd: YVO4晶体,便可实现对抽运功率的充分吸收。本文中选用尺寸为3mm× 3mm×3mm的、掺杂原子数分数为0.005的Nd: YVO4晶体,其好处在于可以使得增益介质内部抽运分布较为均匀,并且增大了散热面积,有利于激光晶体长时间可靠工作。同时,考虑到端面晶体具有更佳的热性能,因此,作者设计中在Nd: YVO4晶体后端面键合了厚度为1mm的YVO4晶体。
调Q固体激光器主要通过短腔长及高功率密度抽运的方式实现窄脉冲激光输出。为了缩短谐振腔长度,在键合晶体的前端面镀HR@1064nm、AR@808nm膜层作为谐振腔腔镜;为了提高抽运光注入功率密度,采用带尾纤LD端面小口径抽运Nd: YVO4晶体。同时,为了获得高重频激光输出,并提高激光脉冲的能量稳定性,作者采用主动声光调Q方案。因此,振荡级由808nm带尾纤LD、抽运光束整形系统、键合Nd: YVO4晶体、声光开关及输出耦合平面镜所构成,谐振腔光程长度为35mm,其原理图如图 1所示。
Nd: YVO4晶体的1064nm波段可以用四能级系统描述,其反转粒子数密度n和腔内光子数ϕ随时间演化的过程由一组联立的微分方程给出[16]:
式中,c为光速;σ21为激光发射频率处的受激发射截面;τf为荧光寿命;n0为总掺杂粒子数密度;ωp为抽运速率。假设抽运光在增益介质内部传输时满足瑞利长度条件,则将抽运速率在长度方向求平均,即可得ωp=I0/(hνpn0l),其中I0为抽运功率密度,νp为抽运光频率,h为普朗克常数,l为增益介质吸收长度,此处即为晶体长度。tr=2l/c为光在谐振腔内传输的往返时间;tc=tr/[1+ln(1/R)]为腔内光子寿命,其中L为谐振腔固有损耗,R为输出耦合镜反射率。由于要进行声光调制,因此腔内损耗还应包括声光开关的衍射损耗,β(t)=β0exp[-(t/t0)2],其中β0为声光开光衍射效率,t0为渡越时间。
由于声光开光封锁能力有限,因此利用4阶龙格-库塔方程求解(2)式,用以模拟声光开关的封锁效果。计算参量为:掺杂原子数分数为0.005的Nd: YVO4晶体,其掺杂晶体长度3mm, 谐振腔光程长35mm,输出耦合镜反射率60%@1064nm,声光开关的衍射效率80%,开关频率25kHz,渡越时间20ns。在抽运功率密度分别为3500W/cm2和4000W/cm2的情况下,振荡级输出激光的时间波形如图 2与图 3所示。
对比图 2和图 3可看出,当抽运功率密度为3500W/cm2时,声光开关在抽运储能环节可以实现良好的封锁作用;在激发阶段随着腔内Q值提高,大量反转粒子被快速消耗,形成巨脉冲输出,此时脉冲宽度为1.69ns。而当抽运功率密度增至4000W/cm2时,声光开关在抽运阶段无法对谐振腔进行有效封锁,在储能环节便有无序脉冲输出;而在激发阶段,由于无序脉冲串消耗了大量的反转粒子,造成激励阶段腔内光子数密度接近于0,无法获得稳定的输出激光。
由于谐振腔长度较短,为了获得高光束质量种子激光,要求谐振腔内通光口径较小。因此,在设计中作者通过控制增益介质内部的抽运光斑尺寸从而达到控制谐振腔通光口径的目的。由于抽运光斑较小,因而增益介质会产生严重的热焦距。将图 1中的键合晶体M面作为参考面,谐振腔的ABCD方程可近似表示为[17]:
式中,L1表示增益介质的光程长度,L2为谐振腔剩余光程长度,fth为热焦距。已知键合晶体总长度为4mm,因此L1≈10mm,L2≈25mm。根据高斯光束ABCD定律,晶体内部基模(TEM00)与拉盖尔-高斯光束(TEMpl)的束腰半径由下式给出:
式中,w0代表基模束腰半径,wpl为拉盖尔-高斯光束的束腰半径,p与l代表拉盖尔-高斯光束的阶数,λ=1.06μm为激光波长。
图 4中给出了谐振腔第一稳区内晶体热焦距与束腰半径之间的关系曲线。从图中可知,基模束腰半径在90μm~117μm,TEM01模的束腰半径在130μm~178μm。将晶体内的抽运光斑半径控制在120μm~130μm,可以较好地抑制TEM01模式起振,从而获得高光束质量种子激光。综上所述,在声光开关频率25kHz、衍射效率80%、输出耦合镜反射率60%的情况下,为了获得高光束质量的种子激光,抽运最大功率不能超过2W。
同时,作者分析了抽运功率2W时,种子激光脉宽、单脉冲能量与输出耦合镜反射率之间的关系,计算结果如表 1所示。
output coupler reflectivity/% pulse width/ns energy/μJ average power/W 50 1.66 35.2 0.88 60 1.69 34.1 0.85 70 1.84 32.4 0.81 Table 1. Parameters of output coupler reflectivity, pulse width and energy
-
考虑到种子激光的脉冲能量较小,其放大过程属于小信号放大,不利于放大级能量提取。因此,作者仍采用受激发射截面较大的Nd: YVO4晶体作为放大级的增益介质。为了获得较好的放大效果,作者采用长度较长的低掺杂Nd: YVO4晶体,其具体参量为:掺杂原子数分数为0.003,晶体尺寸为3mm×3mm×20mm。为了减小晶体内部的热应力,在晶体两端分别键合厚度为2mm的YVO4。由于采用单程放大方案,其光路结构相对简单,如图 5所示。808nm带尾纤LD经光束整形后双端抽运Nd: YVO4晶体,种子激光通过转折镜进入放大光路,再由另一块转折镜输出;两块转折镜镀距法线方向45°的AR@808nm、HR@1064nm膜层。
激光放大过程可由Franz-Nodvik方程描述[18]:
式中,Eout为输出能量通量,Ein为种子脉冲能量通量,Es为饱和能量通量,M=1为放大次数,N0, NTS, NTE分别为对长度积分的初始反转粒子数密度、脉冲放大前的反转粒子数密度和脉冲放大后的反转粒子数密度,f为重复频率,σ为受激吸收截面。
作者计算了抽运功率分别为70W、90W对应不同抽运光斑面积下,放大激光的单脉冲能量,如图 6所示。种子激光参量为:重复频率25kHz,单脉冲能量35μJ。在计算过程中,作者假定种子脉冲光斑与抽运光斑完全重合。
图 6中可以看出,要获得较大的提取效率,抽运光斑半径应考虑在0.3mm附近选取。当抽运总功率为90W、抽运光斑半径为0.3mm时,此时放大后的单脉冲能量达到了0.86mJ,平均功率为21.5W,能量提取效率为23.9%;而当抽运光斑半径持续增大时,输出脉冲能量不断减小,这是由于抽运功率太过分散,导致放大级增益较小。