HTML
-
本文中利用COMSOL Multiphysics数值模拟软件,对上述离散化光瞳滤波器进行了模拟。采用的环带结构参量如表 1所示。
order of zone 1 2 3 radius R/μm 2.0~3.0 3.5~4.5 5.0~6.0 amplitude 0.1359 0.2365 0.5668 phase/rad π 0 π orientation θ/(°) 93.91 6.84 107.26 Table 1. Parameters design of different annular rings of metasurface
以共振波长的径向偏振光为入射光(incident field,INC),沿z轴从衬底一侧入射超表面(metasurface,MS),经过一个正交于径向偏振的角向检偏器(azimuthal polarization analyzer,AP),得到预期的散射光场(scattered field,SCA),并通过大数值孔径透镜(high numerical aperture lens,HNL),在焦点场区可以获得3维的光管场。利用超表面滤波来获得3维衍射受限光管场的光路结构图如图 3所示。
当共振波长选择1064nm时,矩形狭槽天线的长度a=280nm,宽度b=60nm,周期为500nm,100nm厚的金膜被沉积在玻璃衬底上,整个超表面的半径R=6.0μm,每个环带的宽度为1.0μm,间隔为0.5μm。相邻环带之间有π相位差。图 4a为超表面的表面结构图,从图中可以看出,超表面透射区为3个环带,每个环带上采用两层天线结构。图 4b为极坐标下各环带(R1~R3)不同方向的狭槽天线结构图。
波长1064nm径向偏振的入射光经过超表面上的狭槽天线,实现了振幅及相位的转变,再经过一个正交于径向偏振的角向偏振检偏器,过滤掉了径向分量并消除掉了入射场的影响,得到了角向偏振的散射场,其横向光场分布模式如图 5所示。其中,图 5a为归一化的光强分布图,横纵坐标的x和y代表超表面的尺寸,单位为μm。最外侧环带光强最大,最内侧环带光强最弱。为了验证这个散射场是否为角向偏振,让其通过一个y轴方向的线偏振片,得到如图 5b所示场分布。在方位角为0°和180°的位置处,偏振态与线偏振片方向一致,透射光强最大,基本完全透射;方位角为90°与270°的位置处,偏振态与线偏振片方向垂直,透射光强为零。同时,根据图 5a,给出了横向散射光场的1维径向分布图,即3个环带的归一化振幅透射率,如图 5c所示,其中虚线为理论值,实线为计算值。从图 5c中可以看出,经超表面后的振幅透射率,与理论曲线对应的预期离散透射率基本吻合,满足设计需要。
Figure 5. Scattering field distribution of radially polarized light passing through the ultra surface
为进一步验证超表面的振幅和相位调制特性,又分别以线偏振光及圆偏振光入射该超表面,研究了其散射场的分布。当用线偏振光入射超表面时,在超表面后加了一个与入射偏振方向垂直的线偏振片,过滤掉入射光,留下散射场。从图 6a可以看出,散射场的强度分布图为3个具有不同旋转方向的四叶环,其旋转方向与狭槽天线的方向有关。入射线偏振的方向为x轴,用虚线标记。如果以入射线偏振的方向作为参照,当方位角α=mπ/4-θ时,为散射场的光强最大值处(其中θ为每个环狭槽天线的初始方向角,m=1,3,5,7)。因此,对于不同的环来说,它们光强分布满足|sin2(α+θ)|2。
由于线偏振入射很难区分相邻环之间的π相位差,为了证明超表面能够进行相位调制,用一个椭圆率为30°的椭圆偏振光入射超表面,同时,在超表面后放置一个与主轴方向正交的线偏振片来消除背景场的影响。如图 6b所示,其中水平方向虚线为入射椭圆偏振的主轴方向。散射场表现为相邻环带之间存在90°的角向旋转。例如说,在第1个环带达到光强最大处的方位上,第2个环带的光强几乎为零,而在第1个环带光强趋于零的方位上,第2个环带光强几乎达到最大。当然,偏差是由于两个环上狭槽天线的初始方向角θ不同而产生的。
从以上径向偏振光、线偏振光和椭圆偏振光作为入射光的情况看,基于狭槽天线环形阵列的超表面均可用来对散射场的相位、振幅、偏振态进行调制,可通过改变不同环带上狭槽天线的方向来得到所期望的散射场。以径向偏振光作为入射光,经超表面滤波后,变为复振幅离散分布的角向偏振光,通过高数值孔径透镜聚焦后,可以获得3维衍射受限光管场。这种方法不仅能够自由的控制光管场的光强分布,而且更有效地克服了产生过程中的低损耗问题。