[1] |
RIHAKOVA L, CHMELICKOVA H. Laser micromachining of glass, silicon and ceramics. A review[J]. European International Journal of Science and Technology, 2015, 4(7): 41-49. |
[2] |
YANG G Sh, CHEN T, CHEN H. Crack-free silica glass surface micro-grooves etched by 248nm excimer lasers[J]. Chinese Journal of Lasers, 2017, 44(9): 0902004(in Chinese). doi: 10.3788/CJL201744.0902004 |
[3] |
LI Q S, LIANG T, LEI Ch, et al. 355nm all-solid-state ultraviolet laser direct writing and etching of micro-channels in borosilicate glass[J]. Chinese Journal of Lasers, 2018, 45(8): 0802003(in Chin-ese). doi: 10.3788/CJL201845.0802003 |
[4] |
YU H F, XU J, ZHANG A D, et al. Fabrication of embedded submicron metal lines on glass surfaces[J]. Chinese Journal of Lasers, 2020, 47(5): 0502009(in Chinese). doi: 10.3788/CJL202047.0502009 |
[5] |
WANG C. A study on laser etching and polishing quartz glasses technology[D]. Wuhan: Huazhong University of Science & Technology, 2012: 1-70(in Chinese). |
[6] |
HAMDANI A H, AHMED W, ANSAR A, et al. Parametric study of ablation depths for different optical glasses using high fluence laser induced plasma assisted ablation (LIPAA)[C]//Key Engineering Materials. Zurich, Switzerland: Trans Tech Publications Ltd., 2010, 442: 172-177. |
[7] |
RAHMAN T U, REHMAN Z U, ULLAH S, et al. Laser-induced plasma-assisted ablation (LIPAA) of glass: Effects of the laser fluence on plasma parameters and crater morphology[J]. Optics & Laser Technology, 2019, 120: 105768. |
[8] |
SARMA U, JOSHI S N. Two-dimensional numerical investigation on the effect of laser parameters on laser indirect machining of glass[C]//Advances in Mechanical Engineering: Select Proceedings of ICRIDME 2018. Singapore: Springer, 2020: 347-357. |
[9] |
EHRHARDT M, RACIUKAITIS G, GECYS P, et al. Microstructuring of fused silica by laser-induced backside wet etching using picosecond laser pulses[J]. Applied Surface Science, 2010, 256(23): 7222-7227. doi: 10.1016/j.apsusc.2010.05.055 |
[10] |
KWON K K, KIM H, KIM T, et al. High aspect ratio channel fabrication with near-infrared laser-induced backside wet etching[J]. Journal of Materials Processing Technology, 2020, 278: 116505. doi: 10.1016/j.jmatprotec.2019.116505 |
[11] |
SUN X, YU J, HU Y, et al. Study on ablation threshold of fused silica by liquid-assisted femtosecond laser processing[J]. Applied Optics, 2019, 58(33): 9027-9032. doi: 10.1364/AO.58.009027 |
[12] |
BRUSBERG L, QUEISSER M, GENTSCH C, et al. Advances in CO2-laser drilling of glass substrates[J]. Physics Procedia, 2012, 39: 548-555. doi: 10.1016/j.phpro.2012.10.072 |
[13] |
UNO K, YAMAMOTO T, WATANABE M, et al. SiO2-glass drilling by short-pulse CO2 laser with controllable pulse-tail energy[C]//Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) Ⅹ Ⅺ. San Francisco, USA: International Society for Optics and Photonics, 2016, 9735: 973519. |
[14] |
ARGUMENT M. Femtosecond micromachining of glass and semiconductor materials[C]//Opto-Canada: SPIE Regional Meeting on Optoelectronics, Photonics, and Imaging. Ottawa, Canada: International Society for Optics and Photonics, 2017, 10313: 1031321. |
[15] |
CHUANG C F, CHEN K S. A new technique for creating curved interior holes on ultrathin glass based on picosecond laser drilling and thermo-shock separation[C]//2018 Symposium on Design, Test, Integration & Packaging of MEMS and MOEMS (DTIP). New York, USA: IEEE, 2018: 1-5. |
[16] |
ITO Y, SHINOMOTO R, NAGATO K, et al. Mechanisms of da-mage formation in glass in the process of femtosecond laser drilling[J]. Applied Physics, 2018, A124(2): 181. |
[17] |
WEI J, ZHANG B, LIU H, et al. Time-resolved shadowgraphic i-maging of femtosecond laser ablated micro-holes in silica glass[J]. Chinese Journal of Lasers, 2019, 46(5): 0508020(in Chinese). doi: 10.3788/CJL201946.0508020 |
[18] |
KONO I, NAKANISHI A, WARISAWA S, et al. Study on non-crack laser machining of glass by using absorbent powder[C]//20th Annual Meeting of the American Society for Precision Engineering. Norfolk, USA: ASPE, 2005: 9-14. |
[19] |
ITO Y, YOSHIZAKI R, MIYAMOTO N, et al. Ultrafast and precision drilling of glass by selective absorption of fiber-laser pulse into femtosecond-laser-induced filament[J]. Applied Physics Letters, 2018, 113(6): 061101. doi: 10.1063/1.5027421 |
[20] |
WANG H Zh, GUO P F, WU Sh, et al. Bottom-up drilling of transparent materials[J]. Chinese Journal of Lasers, 2020, 47(3): 0302003(in Chinese). doi: 10.3788/CJL202047.0302003 |
[21] |
CVECEK K, DEHMEL S, MIYAMOTO I, et al. A review on glass welding by ultra-short laser pulses[J]. International Journal of Extreme Manufacturing, 2019, 1(4): 042001. doi: 10.1088/2631-7990/ab55f6 |
[22] |
POHL L, von WITZENDORFF P, SUTTMANN O, et al. Automated laser-based glass fusing with powder additive[C]//International Congress on Applications of Lasers & Electro-Optics. Orlando, USA: Laser Institute of America, 2014: 528-532. |
[23] |
POHL L, von WITZENDORFF P, CHATZIZYRLI E, et al. CO2 laser welding of glass: Numerical simulation and experimental study[J]. The International Journal of Advanced Manufacturing Techno-logy, 2017, 90(1/4): 397-403. |
[24] |
de PABLOS-MARTÍN A, HÖCHE T. Laser welding of glasses using a nanosecond pulsed Nd∶ YAG laser[J]. Optics and Lasers in Engineering, 2017, 90: 1-9. |
[25] |
ZHANG X, GUO L, ZHANG Q, et al. Investigation of the reaction mechanism and optical transparency in nanosecond laser welding of glasses assisted with titanium film[J]. Applied Optics, 2020, 59(4): 940-947. doi: 10.1364/AO.378409 |
[26] |
de PABLOS-MARTÍN A, BENNDORF G, TISMER S, et al. Laser-welded fused silica substrates using a luminescent fresnoite-based sealant[J]. Optics & Laser Technology, 2016, 80: 176-185. |
[27] |
SUN K, SUN Sh Zh, QIU J R. Recent research progress in ultrashort pulsed laser welding of non-metallic materials[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111411(in Chinese). |
[28] |
RICHTER S, DÖRING S, TVNNERMANN A, et al. Bonding of glass with femtosecond laser pulses at high repetition rates[J]. A-pplied Physics, 2011, A103(2): 257-261. |
[29] |
DING T, WANG X H, WANG G D, et al. Welding of fused silica by using high repetition frequency femtosecond laser[J]. Chinese Journal of Lasers, 2018, 45(7): 10701007(in Chinese). |
[30] |
RICHTER S, ZIMMERMANN F, SUTTER D, et al. Ultrashort pulse laser welding of glasses without optical contacting[C]//Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial A-pplications Ⅹ Ⅶ. Ottawa, Canada: International Society for Optics and Photonics, 2017, 10094: 1009411. |
[31] |
CHEN H, DENG L, DUAN J, et al. Picosecond laser welding of glasses with a large gap by a rapid oscillating scan[J]. Optics Le-tters, 2019, 44(10): 2570-2573. doi: 10.1364/OL.44.002570 |
[32] |
YU M, HUANG T, XIAO Sh R. Long focal length green femtose-cond laser welding of glass[J]. Chinese Journal of Lasers, 2020, 47(9): 0902005(in Chinese). doi: 10.3788/CJL202047.0902005 |
[33] |
CHEN J B. Principles of laser and its applications[M]. 4th ed. Beinjing: Publishing House of Electronics Industry, 2019: 1-333(in Chinese). |
[34] |
WATANABE W, LI Y, ITOH K. Ultrafast laser micro-processing of transparent material[J]. Optics & Laser Technology, 2016, 78: 52-61. |
[35] |
LIN Y. Exceptionally transparent superhydrophobic glass surfaces fabricated by ultrafast laser and their stability and durability[D]. Beijing: Tsinghua University, 2018: 1-80(in Chinese). |
[36] |
AHSAN M S, DEWANDA F, LEE M S, et al. Formation of superhydrophobic soda-lime glass surface using femtosecond laser pulses[J]. Applied Surface Science, 2013, 265: 784-789. doi: 10.1016/j.apsusc.2012.11.112 |
[37] |
WANG B, HUA Y, YE Y, et al. Transparent superhydrophobic solar glass prepared by fabricating groove-shaped arrays on the surface[J]. Applied Surface Science, 2017, 426: 957-964. doi: 10.1016/j.apsusc.2017.07.169 |
[38] |
HOU T J, AI J, LIU J G, et al. Selective preparation of metal co-pper layer on silicate glass by laser surface modification[J]. Laser Technology, 2018, 42(2): 176-180(in Chinese). |
[39] |
REINHARDT H M, MAIER P, KIM H C, et al. Nanostructured transparent conductive electrodes for applications in harsh environments fabricated via nanosecond laser-induced periodic surface structures (LIPSS) in indium-tin oxide films on glass[J]. Advanced Materials Interfaces, 2019, 6(16): 1900401. |
[40] |
SHAIKH S, SINGH D, SUBRAMANIAN M, et al. Femtosecond laser induced surface modification for prevention of bacterial adhesion on 45S5 bioactive glass[J]. Journal of Non-Crystalline Solids, 2018, 482: 63-72. doi: 10.1016/j.jnoncrysol.2017.12.019 |
[41] |
VILLAP U ' N V M, QU B, LUND P A, et al. Optimizing the antimicrobial performance of metallic glass composites through surface texturing[J]. Materials Today Communications, 2020, 23: 101074. doi: 10.1016/j.mtcomm.2020.101074 |
[42] |
ZHANG G, CHENG G, BHUYAN M K, et al. Ultrashort Bessel beam photoinscription of Bragg grating waveguides and their application as temperature sensors[J]. Photonics Research, 2019, 7(7): 806-814. doi: 10.1364/PRJ.7.000806 |
[43] |
HUANG X, GUO Q, YANG D, et al. Reversible 3-D laser printing of perovskite quantum dots inside a transparent medium[J]. Nature Photonics, 2020, 14(2): 82-88. doi: 10.1038/s41566-019-0538-8 |
[44] |
LI Y, QU S. Femtosecond laser-induced breakdown in distilled water for fabricating the helical microchannels array[J]. Optics Le-tters, 2011, 36(21): 4236-4238. doi: 10.1364/OL.36.004236 |
[45] |
TAN Y, CHU W, WANG P, et al. Water-assisted laser drilling of high-aspect-ratio 3-D microchannels in glass with spatiotemporally focused femtosecond laser pulses[J]. Optical Materials Express, 2019, 9(4): 1971-1978. doi: 10.1364/OME.9.001971 |
[46] |
BROKMANN U, MILDE T, RÄDLEIN E, et al. Fabrication of 3-D microchannels for tissue engineering in photosensitive glass using NIR femtosecond laser radiation[J]. Biomedical Glasses, 2019, 5(1): 34-45. doi: 10.1515/bglass-2019-0003 |
[47] |
QI J, LI W, CHU W, et al. A microfluidic mixer of high throughput fabricated in glass using femtosecond laser micromachining combined with glass bonding[J]. Micromachines, 2020, 11(2): 213. doi: 10.3390/mi11020213 |