[1] |
范晋祥. 美国弹道导弹防御系统的红外系统与技术的发展[J]. 红外与激光程, 2006, 35(5): 536-540.FAN J X. Status quo and trend of infrared system and technologies for America's ballistic missile defense system[J]. Infrared and Laser Engineering, 2006, 35(5): 536-540(in Chinese). |
[2] |
MOULTON P, DERGACHEV A, ISYANOVA Y, et al. Recent advances in solid state lasers and nonlinear optics for remote sensing[C]// Conference on Lidar Remote Sensing for Industry and Environment Monitoring Ⅲ. Bellingham, USA: International Society for Optical Engineering, 2003: 193-202. |
[3] |
GUO B J, WANG Y, PENG C, et al. Laser-based mid-infrared reflectance imaging of biological tissues[J]. Optics Express, 2004, 12(1): 208-219. doi: 10.1364/OPEX.12.000208 |
[4] |
VAN HERPEN M, TE LINTEL HEKKERT S, BISSON S E, et al. Development of a powerful continuously tunable mid-infrared CW PPLN OPO for trace gas detection[C]// ALT'01 International Conference on Advanced Laser Technologies. Bellingham, USA: International Society for Optical Engineering, 2002: 16-21. |
[5] |
VAINIO M, SILTANEN M, PELTOLA J, et al. Grating-cavity continuous-wave optical parametric oscillators for high-resolution mid-infrared spectroscopy[J]. Applied Optics, 2011, 50(4): A1-A10. doi: 10.1364/AO.50.0000A1 |
[6] |
RICHTER D, FRIED A, WERT B P, et al. Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection[J]. Applied Physics, 2002, B75(2/3): 281-288. |
[7] |
KRZEMPEK K, JAHJAH M, LEWICKI R, et al. CW DFB RT diode laser based sensor for trace-gas detection of ethane using novel compact multipass gas absorption cell[J]. Applied Physics, 2013, B112(4): 461-465. |
[8] |
ELVIN R, HOTH G W, WRIGHT M, et al. Cold-atom clock based on a diffractive optic[J]. Optics Express, 2019, 27(26): 38359-38366. doi: 10.1364/OE.378632 |
[9] |
REN T, WU C, YU Y, et al. Development progress of 3-5 μm mid-infrared lasers: OPO, solid-state and fiber laser[J]. Applied Sciences, 2021, 11(23): 11451. doi: 10.3390/app112311451 |
[10] |
TURNER E J, McDANIEL S A, TABIRYAN N, et al. Rapidly tunable HIP treated Cr ∶ZnSe narrow-linewidth laser[J]. Optics Express, 2019, 27(9): 12282-12288. doi: 10.1364/OE.27.012282 |
[11] |
LI Y Y, JU Y L, DAI T Y, et al. A gain-switched Fe ∶ZnSe laser pumped by a pulsed Ho, Pr: LLF laser[J]. Chinese Physics Letters, 2019, 36(4): 24-26. |
[12] |
WANG Q, LIU C, QI L, et al. Wavelength tunable single-frequency Cr ∶ZnSe laser[C]// 2019 International Conference on Optical Instruments and Technology: Advanced Laser Technology and Applications. Bellingham, USA: International Society for Optical Engineering, 2019: 114370H. |
[13] |
DAI S, FENG G, HONG Z, et al. 4.24 μm mid-infrared laser based on a single Fe2+-doped ZnSe microcrystal[J]. Optics Letters, 2018, 43(3): 411-414. doi: 10.1364/OL.43.000411 |
[14] |
EVANS J W, STITES R W, HARRIS T R. Increasing the performance of an Fe ∶ZnSe laser using a hot isostatic press[J]. Optical Materials Express, 2017, 7(12): 4296-4303. doi: 10.1364/OME.7.004296 |
[15] |
EVANS J W, DOLASINSKO B D, HARRIS T R, et al. Demonstration and power scaling of an Fe ∶CdMnTe laser at 5.2 microns[J]. Optical Materials Express, 2017, 7(3): 860-867. doi: 10.1364/OME.7.000860 |
[16] |
STITES R W, McDANIEL S A, BARNES J O, et al. Hot isostatic pressing of transition metal ions into chalcogenide laser host crystals[J]. Optical Materials Express, 2016, 6(10): 3339-3353. doi: 10.1364/OME.6.003339 |
[17] |
YUAN J H, CHEN Y, YANG H Y, et al. Investigation of a gain-switched Cr2+ ∶ZnSe laser pumped by an acousto-optic Q-switched Ho ∶YAG laser[J]. Quantum Electronics, 2016, 46(9): 772-776. doi: 10.1070/QEL16157 |
[18] |
LANCASTER A, COOK G, McDANIEL S A, et al. Mid-infrared laser emission from Fe ∶ZnSe cladding waveguides[J]. Applied Physics Letters, 2015, 107(3): 885-895. |
[19] |
MAcDONALD J R, BEECHER S J, LANCASTER A, et al. Ultrabroad mid-infrared tunable Cr ∶ZnSe channel waveguide laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 21(1): 375-379. |
[20] |
CHEN M, CUI H, LI W, et al. Reparative effect of diffusion process on host defects in Cr2+ doped ZnS/ZnSe[J]. Journal of Alloys and Compounds, 2014, 597(17): 124-128. |
[21] |
McDANIEL S A, BERRY P A, SCHEPLER K L, et al. Gain-switched operation of ultrafast laser inscribed waveguides in Cr ∶ZnSe[C]// Solid State Lasers Ⅹ Ⅹ Ⅳ: Technology and Devices. Bellingham, USA: International Society for Optical Engineering, 2015: 93420E. |
[22] |
SHEN Y, WANG Y, ZHU F, et al. 200 μJ, 13 ns Er ∶ZBLAN mid-infrared fiber laser actively Q-switched by an electro-optic modulator[J]. Optics Letters, 2021, 46(5): 1141-1144. doi: 10.1364/OL.418950 |
[23] |
SHEN Y, WANG Y, LUAN K, et al. High peak power actively Q-switched mid-infrared fiber lasers at 3 μm[J]. Applied Physics, 2017, B123(4): 105-111. |
[24] |
CRAWFORD S, HUDSON D D, JACKSON S D. High-power broadly tunable 3 μm fiber laser for the measurement of optical fiber loss[J]. IEEE Photonics Journal, 2015, 7(3): 1502309. |
[25] |
BERNIER M, MICHAUD-BELLEAU V, LEVASSEUR S, et al. All-fiber DFB laser operating at 2.8 μm[J]. Optics Letters, 2015, 40(1): 81-84. doi: 10.1364/OL.40.000081 |
[26] |
沈炎龙, 黄珂, 朱峰, 等. LD泵浦瓦级单模高掺铒中红外光纤激光器[J]. 光子学报, 2014, 43(3): 0314002.SHEN Y L, HUANG K, ZHU F, et al. Laser diode-pumped watt-level single mode heavily erbium-doped mid-infrared fiber laser[J]. Acta Photonica Sinica, 2014, 43(3): 0314002(in Chinese). |
[27] |
HUDSON D D, WILLIAMS R J, WITHFORD M J, et al. Single-frequency fiber laser operating at 2.9 μm[J]. Optics Letters, 2013, 38(14): 2388-2390. doi: 10.1364/OL.38.002388 |
[28] |
ZHU X Sh, JAIN R. Compact 2 W wavelength-tunable Er ∶ZBLAN mid-infrared fiber laser[J]. Optics Letters, 2007, 32(16): 2381-2383. doi: 10.1364/OL.32.002381 |
[29] |
BAYRAKLI I. Frequency-stabilized narrow-linewidth double-mode quantum cascade laser[J]. Optical and Quantum Electronics, 2022, 54(1): 22 (2022). |
[30] |
CAPPELLI F, GALLI I, BORRI S, et al. Subkilohertz linewidth room-temperature mid-infrared quantum cascade laser using a molecular sub-doppler reference[J]. Optics Letters, 2012, 37(23): 4811-4813. doi: 10.1364/OL.37.004811 |
[31] |
SHEHZAD A, BROCHARD P, MATTHEY R, et al. 10 kHz linewidth mid-infrared quantum cascade laser by stabilization to an optical delay line[J]. Optics Letters, 2019, 44(14): 3470-3473. doi: 10.1364/OL.44.003470 |
[32] |
BORRI S, GALLI I, CAPPELLI F, et al. Direct link of a mid-infrared QCL to a frequency comb by optical injection[J]. Optics Letters, 2012, 37(6): 1011-1013. doi: 10.1364/OL.37.001011 |
[33] |
ZHAO B, WANG X, WANG C. Strong optical feedback stabilized quantum cascade laser[J]. ACS Photonics, 2020, 7(5): 1255-1261. doi: 10.1021/acsphotonics.0c00189 |
[34] |
聂鸿坤, 宁建, 张百涛, 等. 光学超晶格中红外光参量振荡器研究进展[J]. 中国激光, 2021, 48(5): 0501008.NIE H K, NING J, ZHANG B T, et al. Recent progress of optical-superlattice-based mid-infrared optical parametric oscillators[J]. Chinese Journal of Lasers, 2021, 48(5): 0501008 (in Chinese). |
[35] |
WANG X C, WANG Y H, ZHENG H, et al. Wide-tunable mid infrared intra-cavity optical parametric oscillator based on multi-period MgO ∶PPLN[J]. Current Optics and Photonics, 2021, 5(1): 59-65. |
[36] |
RICCIARDI I, MOSCA S, PARISI M, et al. Sub-kHz-linewidth mid-infrared optical parametric oscillator[C]// Conference on Lasers and Electro-Optics. New York, USA: IEEE, 2014: STh1N. 3. |
[37] |
FENG J, CHENG X, LI X, et al. Highly efficient mid-infrared generation from low-power single-frequency fiber laser using phase-matched intracavity difference frequency mixing[J]. Applied Sciences-Basel, 2020, 10(21): 7454-7461. doi: 10.3390/app10217454 |
[38] |
ZHAO J, CHENG P, XU F, et al. Watt-level continuous-wave single-frequency mid-infrared optical parametric oscillator based on MgO ∶PPLN at 3.68 μm[J]. Applied Sciences-Basel, 2018, 8(8): 1345-1352. doi: 10.3390/app8081345 |
[39] |
邢廷伦, 王礼, 胡舒武, 等. 3μm低阈值MgO ∶PPLN-OPO布拉格体光栅腔谱宽压窄研究[J]. 中国激光, 2017, 44(1): 10101006.XING Y L, WANG L, HU Sh W, et al. Cavity-linewidth narrowing of 3 μm low threshold MgO ∶PPLN-OPO by volume Bragg grating[J]. Chinese Journal of Lasers, 2017, 44(1): 0101006 (in Chinese). |
[40] |
XING T, WANG L, HU S, et al. Widely tunable and narrow-bandwidth pulsed mid-IR PPMgLN-OPO by self-seeding dual etalon-coupled cavities[J]. Optics Express, 2017, 25(25): 31810-31815. doi: 10.1364/OE.25.031810 |
[41] |
JIAO Z, GUO J, HE G, et al. Narrowband intracavity MgO ∶PPLN optical parametric oscillator near degeneracy with a volume Bragg grating[J]. Optics and Laser Technology, 2014, 56: 230-233. doi: 10.1016/j.optlastec.2013.08.023 |
[42] |
ZEIL P, THILMANN N, PASISKEVICIUS V, et al. High-power, single-frequency, continuous-wave optical parametric oscillator employing a variable reflectivity volume Bragg grating[J]. Optics Express, 2014, 22(24): 29907-29913. doi: 10.1364/OE.22.029907 |
[43] |
DOLASINSKI B, POWERS P. Narrow bandwidth tunable optical parametric generator[C]// Nonlinear Frequency Generation and Conversion. Bellingham, USA: International Society for Optical Engineering, 2013: 8604H. |
[44] |
RICCIARDI I, DE TOMMASI E, MADDALONI P, et al. A narrow-linewidth optical parametric oscillator for mid-infrared high-resolution spectroscopy[J]. Molecular Physics, 2012, 110(17): 2103-2109. doi: 10.1080/00268976.2012.699640 |
[45] |
JACOBSSON B, CANALIAS C, PASISKEVICIUS V, et al. Narrowband and tunable ring optical parametric oscillator with a volume Bragg grating[J]. Optics Letters, 2007, 32(22): 3278-3280. doi: 10.1364/OL.32.003278 |
[46] |
PENG Y, WEI X, NIE Z, et al. High-power, narrow-bandwidth mid-infrared PPMgLN optical parametric oscillator with a volume Bragg grating[J]. Optics Express, 2015, 23(24): 30827-30832. doi: 10.1364/OE.23.030827 |
[47] |
HE G, GUO J, JIAO Z, et al. High-efficiency near-degenerate PPMgLN optical parametric oscillator with a volume Bragg grating[J]. Optics Letters, 2012, 37(8): 1364-1366. doi: 10.1364/OL.37.001364 |
[48] |
LI K, YANG S, WANG X, et al. Frequency chirped intensity modulated mid-infrared light source based on optical parametric oscillation[J]. IEEE Photonics Journal, 2020, 12(1): 1500409. |
[49] |
ERUSHIN E, NYUSHKOV B, IVANENKO A, et al. Tunable injection-seeded fan-out-PPLN optical parametric oscillator for high-sensitivity gas detection[J]. Laser Physics Letters, 2021, 18(11): 116201-116207. doi: 10.1088/1612-202X/ac2585 |
[50] |
卞进田, 叶庆, 孙晓泉. ZnGeP2 OPO产生4.3μm波段窄线宽激光实验研究[J]. 国防科技大学学报, 2018, 40(4): 9-14.BIAN J T, YE Q, SUN X Q. ZnGeP2 optical parametric oscillator 4.3 μm laser with narrow line-width[J]. Journal of National University of Defense Technology, 2018, 40(4): 9-14(in Chinese). |
[51] |
BIAN J T, KONG H, YE Q, et al. Narrow-linewidth BaGa4Se7 optical parametric oscillator[J]. Chinese Optics Letters, 2022, 20(4): 041901. |