[1] |
POOLE S B, PAYNE D N, FERMANN M E. Fabrication of low-loss optical fibres containing rare-earth ions[J]. Electronics Letters, 1985, 17(21): 737-738. |
[2] |
刘帅帅, 张亮, 魏鹤鸣, 等. 环形芯掺铒涡旋光纤的放大特性研究[J]. 中国激光, 2023, 50(10): 1006003.LIU Sh Sh, ZHANG L, WEI H M, et al. Study on amplification of ring-core erbium-doped vortex fibers[J]. Chinese Journal of Lasers, 2023, 50(10): 1006003(in Chinese). |
[3] |
张博, 张恩涛, 胡小川, 等. 多波长掺铒光纤激光放大器的放大特性研究[J]. 激光技术, 2018, 42(3): 325-330.ZHANG B, ZHANG E T, HU X Ch, et al. Amplification characteristics of multiwavelength erbium-doped fiber laser amplifiers[J]. Laser Technology, 2018, 42(3): 325-330(in Chinese). |
[4] |
郝蕴琦, 贾若一, 丁贝贝, 等. 掺铒光纤自发辐射宽带光源带宽优化研究[J]. 激光技术, 2023, 47(4): 500-505.HAO Y Q, JIA R Y, DING B B, et al. Research of optimized wide-bandwidth optical source with Er3+-doped fiber amplified spontaneous emission[J]. Laser Technology, 2023, 47(4): 500-505(in Chin-ese). |
[5] |
欧攀, 曹彬, 张春熹, 等. 超辐射掺铒光纤光源平均波长稳定性分析[J]. 激光与光电子学进展, 2008, 45(5): 26-30.OU P, CAO B, ZHANG Ch X, et al. Analysis of mean-wavelength stability of Er-doped super fluorescent fiber sources[J]. Laser & Optoelectronics Progress, 2008, 45(5): 26-30(in Chinese). |
[6] |
GUILLAUMOND D, MEUNIER J P. Comparison of two flattening techniques on a double-pass erbium-doped superfluorescent fiber source for fiber-optic gyroscope[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2001, 7(1): 17-21. doi: 10.1109/2944.924004 |
[7] |
邱嘉荦, 王磊, 黄腾超, 等. 干涉式光纤陀螺技术发展综述[J]. 光学学报, 2022, 42(17): 1706004.QIU J L, WANG L, HUANG T Ch, et al. Review of development of interferometric fiber-optic gyroscopes[J]. Acta Optica Sinica, 2022, 42(17): 1706004(in Chinese). |
[8] |
SODERLUND M, TAMMELA S, HOFFMAN H J, et al. Direct nano-particle deposition builds active fibers[J]. Laser Focus World, 2006, 42(1): 103-111. |
[9] |
TAMMELA S, KIIVERI P, SARKILAHTI S, et al. Direct nanoparticle deposition process for manufacturing very short high gain Er-doped silica glass fibers[C]//2002 28th European Conference on Optical Communication. New York, USA: IEEE, 2002: 1-2. |
[10] |
KIR'YANOV A V, BARMENKOV Y O, SANDOVAL-ROMERO G E, et al. Er3+ concentration effects in commercial erbium-doped silica fibers fabricated through the MCVD and DND technologies[J]. IEEE Journal of Quantum Electronics, 2013, 49(6): 511-521. |
[11] |
傅永军, 简伟, 郑凯, 等. 掺铒光纤的纤芯折射率[J]. 中国激光, 2006, 33(3): 347-350.FU Y J, JIAN W, ZHENG K, et al. Refractive index control in fabrication of erbium doped fiber[J]. Chinese Journal of Lasers, 2006, 33(3): 347-350(in Chinese). |
[12] |
程永师. 用于1.5 μm光纤激光器的掺铒及铒镱共掺光纤研究[D]. 武汉: 华中科技大学, 2020: 45-58.CHENG Y Sh. The research on erbium-doped and erbium-ytterbium co-doped fibers for 1.5 μm fiber laser[D]. Wuhan: Huazhong University of Science & Technology, 2020: 45-58(in Chinese). |
[13] |
高亚明, 冯光, 刘永建, 等. 掺铒光纤的研制[J]. 红外与激光工程, 2009, 38(3): 515-519.GAO Y M, FENG G, LIU Y J, et al. Manufacture of erbium-doped optica fiber[J]. Infrared and Laser Engineering, 2009, 38(3): 515-519(in Chinese). |
[14] |
YANG Q, JIAO Y, YU C, et al. Gain and laser performance of heavily Er-doped silica fiber fabricated by MCVD combined with the sol-gel method[J]. Chinese Optics Letters, 2021, 19(11): 110603. |
[15] |
BISWAS A, MACIEL G S, KAPOOR R, et al. Er3+-doped multicomponent sol-gel-processed silica glass for optical signal amplification at 1.5 μm[J]. Applied Physics Letters, 2003, 82(15): 2389-2391. |
[16] |
刘志明. 单模大模场直径高浓度掺铒光纤及相关器件的研制[D]. 北京: 北京交通大学, 2012: 59-91.LIU Zh M. Study and fabrication of single mode large-mode-diameter high concentration erbium doped fibers and related device[D]. Beijing: Beijing Jiaotong University, 2012: 59-91(in Chinese). |
[17] |
辜之木, 褚应波, 李海清, 等. 多芯掺铒光纤的制备及其放大性能[J]. 中国激光, 2022, 49(9): 0906003.GU Zh M, CHU Y B, LI H Q, et al. Fabrication and amplification characteristics of multicore erbium-doped fiber[J]. Chinese Journal of Lasers, 2022, 49(9): 0906003(in Chinese). |
[18] |
何乐, 褚应波, 戴能利, 等. 石英基L波段扩展掺铒光纤及其放大性能[J]. 物理学报, 2022, 71(15): 154204.HE L, CHU Y B, DAI N L, et al. Silicate-based erbium-doped fiber extended to L-band and its amplification performance[J]. Acta Physica Sinica, 2022, 71(15): 154204(in Chinese). |
[19] |
LENARDIC B, KVEDER M. Advanced vapor-phase doping method using chelate precursor for fabrication of rare earth-doped fibers[C]//2009 Optical Fiber Communication Conference. New York, USA: IEEE, 2009: 1538-1540. |
[20] |
ANUAR K, MUHD-YASIN S Z, ZULKIFLI M I, et al. Er2O3-Al2O3 doped silica preform prepared by MCVD-chelate vapor phase delivery technique[J]. Advanced Materials Research, 2014, 896: 219-224. |
[21] |
SAHA M, PAL A, SEN R. Vapor phase doping of rare-earth in optical fibers for high power laser[J]. IEEE Photonics Technology Le-tters, 2014, 26(1): 58-61. |
[22] |
徐宏杰, 杜赛辉. 掺铒光纤吸收截面和发射截面温度特性研究[J]. 激光与光电子学进展, 2014, 51(10): 100601.XU H J, DU S H. Temperature dependence of absorption and emi-ssion cross sections in erbium-doped fibers[J]. Laser & Optoelectronics Progress, 2014, 51(10): 100601(in Chinese). |