[1] |
BRIARD J, PUCEAT E, VENNIN E, et al. Seawater paleotemperature and paleosalinity evolution in neritic environments of the mediterranean margin: insights from isotope analysis of bivalve shells[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 543: 109582. doi: 10.1016/j.palaeo.2019.109582 |
[2] |
FORTES F J, VADILLO I, STOLL H, et al. Spatial distribution of paleoclimatic proxies in stalagmite slabs using laser-induced breakdown spectroscopy[J]. Journal of Analytical Atomic Spectrometry, 2012, 27(5): 868-873. doi: 10.1039/c2ja10299d |
[3] |
YAN H, LIU C C, AN Z S, et al. Extreme weather events recorded by daily to hourly resolution biogeochemical proxies of marine giant clam shells[J]. Proceedings of the National Academy of Sciences, 2020, 117(13): 7038-7043. doi: 10.1073/pnas.1916784117 |
[4] |
HAHN D W, OMENETTO N. Laser-induced breakdown spectroscopy (LIBS), Part Ⅰ: Review of basic diagnostics and plasma-particle interactions: Still-challenging issues within the analytical plasma community[J]. Applied Spectroscopy, 2010, 64(12): 335A-336A. doi: 10.1366/000370210793561691 |
[5] |
ONGE L S, DETALLE V, SABSABI M. Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd∶ YAG laser pulses[J]. Spectrochimica Acta, 2002, B57(1): 121-135. |
[6] |
RAKOVSKY J, CERMAK P, MUSSET O, et al. A review of the development of portable laser induced breakdown spectroscopy and its applications[J]. Spectrochimica Acta, 2014, B101: 269-287. |
[7] |
GIACOMO A D, RAUDIUSO R, KORAL C, et al. Nanoparticle-enhanced laser-induced breakdown spectroscopy of metallic samples[J]. Analytical Chemistry, 2013, 84(21): 10180-10187. |
[8] |
DELL'AGLIO M, ALRIFAI R, GIACOMO A D, et al. Nanoparticle enhanced laser induced breakdown spectroscopy (NELIBS), a first review[J]. Spectrochimica Acta, 2018, B148: 105-112. |
[9] |
LASHERAS R J, PAULES D, ESCUDERO M, et al. Quantitative analysis of major components of mineral particulate matter by calibration free laser-induced breakdown spectroscopy[J]. Spectrochimica Acta, 2020, B171: 105918. |
[10] |
CHEN X, LI X H, YU X, et al. Diagnosis of human malignancies using laser-induced breakdown spectroscopy in combination with chemometric methods[J]. Spectrochimica Acta, 2018, B139: 63-69. |
[11] |
ZORBA V, MAO X L, RUSSO R E, et al. Femtosecond laser induced breakdown spectroscopy of Cu at the micron/sub-micron scale[J]. Spectrochimica Acta, 2015, B113: 37-42. |
[12] |
RAKOVSKY J, MUSSET O, BUONCRISTIANI J, et al. Testing a portable laser-induced breakdown spectroscopy system on geological sample[J]. Spectrochimica Acta, 2012, B74/75: 57-65. |
[13] |
VARELA J A, AMADO J M, TOBAR M J, et al. Characterization of hard coatings produced by laser cladding using laser-induced breakdown spectroscopy technique[J]. Applied Surface Science, 2015, 336: 396-400. doi: 10.1016/j.apsusc.2015.01.037 |
[14] |
LOPEZ-QUINTAS I, MATEO M P, PINON V, et al. Mapping of mechanical specimens by laser induced breakdown spectroscopy method: Application to an engine valve[J]. Spectrochimica Acta, 2012, B74/75: 109-114. |
[15] |
LIN L Y, YAN X L, LIAO X Y, et al. Migration and arsenic adsorption study of starch-modified Fe-Ce oxide on a silicon-based micromodel observation platform[J]. Journal of Hazardous Materials, 2017, 338 (17): 202-207. |
[16] |
BOUE-BIGNE F. Laser-induced breakdown spectroscopy applications in the steel industry: Rapid analysis of segregation and decarburization[J]. Spectrochimica Acta, 2008, B63(10): 1122-1129. |
[17] |
ROMPPANEN S, HAKKANEN H, KASKI S. Singular value decomposition approach to the yttrium occurrence in mineral maps of rare earth element ores using laser-induced breakdown spectroscopy[J]. Spectrochimica Acta, 2017, B134: 69-74. |
[18] |
CHEN L, YOU L B, LUO X F, et al. Detection of Cd in table salt by LIBS technology[J]. Laser Technology, 2019, 43(1): 6-10(in Chinese). |
[19] |
STRYCKER B D, WANG K, SPRINGER M, et al. Chemical-specific imaging of shallowly buried objects using femtosecond laser pulses[J]. Applied Optics, 2013, 52(20): 4792-4796. doi: 10.1364/AO.52.004792 |
[20] |
MENUT D, FICHET P, LACOUR J L, et al. Micro-laser-induced breakdown spectroscopy technique: A powerful method for performing quantitative surface mapping on conductive and nonconductive samples[J]. Applied Optics, 2003, 42(30): 6063-6071. doi: 10.1364/AO.42.006063 |
[21] |
SANCEY L, MOTTO-ROS V, BUSSER B, et al. Laser spectrometry for multi-elemental imaging of biological tissues[J]. Scientific Reports, 2016, 4(1): 6065. |
[22] |
BONNORS B, SOMERS A, DAY D. Application of handheld laser-induced breakdown spectroscopy (LIBS) to geochemical analysis[J]. Applied Spectroscopy, 2016, 70(5): 810-815. doi: 10.1177/0003702816638247 |
[23] |
QUARLES C D, GONZALEZ J J, EAST L J, et al. Fluorine analysis using laser induced breakdown spectroscopy (LIBS)[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(7): 1238-1242. doi: 10.1039/c4ja00061g |
[24] |
DARWICHE S, BENMANSOUR M, ELIEZER N, et al. Laser-induced breakdown spectroscopy for photovoltaic silicon wafer analysis[J]. Progress in Photovoltaics, 2012, 20(4): 463-471. doi: 10.1002/pip.1209 |
[25] |
CACERES J O, PELASCINI F, MOTTOROS V, et al. Megapixel multi-elemental imaging by laser-induced breakdown spectroscopy, a technology with considerable potential for paleoclimate studies[J]. Scientific Reports, 2017, 7(1): 5080. doi: 10.1038/s41598-017-05437-3 |
[26] |
LOPEZ-LOPEZ M, ALVAREZ-LLAMAS C, PISONERO J, et al. An exploratory study of the potential of LIBS for visualizing gunshot residue patterns[J]. Forensic Science International, 2017, 273: 124-131. doi: 10.1016/j.forsciint.2017.02.012 |
[27] |
SWEEYAPPLE M T, TASSIOS S. Laser-induced breakdown spectroscopy (LIBS) as a tool for in situ mapping and textural interpretation of lithium in pegmatite minerals[J]. American Mineralogist, 2015, 100(10): 2141-2151. doi: 10.2138/am-2015-5165 |
[28] |
HOESHE M, GORNUSHKIN L, MERK S, et al. Assessment of suitability of diode pumped solid state lasers for laser induced breakdown and Raman spectroscopy[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(2): 414-424. doi: 10.1039/C0JA00038H |
[29] |
LI J M, HAO Z Q, ZHAO N, et al. Spatially selective excitation in laser-induced breakdown spectroscopy combined with laser-induced fluorescence[J]. Optics Express, 2017, 25(5): 4945-4951. doi: 10.1364/OE.25.004945 |
[30] |
MANARD B T, QUARLES C D, WYLIE E M, et al. Laser ablation-inductively couple plasma-mass spectrometry/laser induced break down spectroscopy: A tandem technique for uranium particle characterization[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(9): 1680-1687. doi: 10.1039/C7JA00102A |
[31] |
BRUNNBAUER L, MAYR M, LARISEGGER S, et al. Combined LA-ICP-MS/LIBS: Powerful analytical tools for the investigation of polymer alteration after treatment under corrosive conditions[J]. Scientific Reports, 2020, 10(1): 103-114. doi: 10.1038/s41598-019-57096-1 |
[32] |
MA Q L, MOTTO-ROS V, LEI W Q, et al. Multi-elemental mapping of a speleothem using laser-induced breakdown spectroscopy[J]. Spectrochimica Acta, 2010, B65(8): 707-714. |
[33] |
LI H Y, CHENG H, WANG J, et al. Applications of laser induced breakdown spectroscopy to paleoclimate research: Reconstructing speleothem trace element records[J]. Quaternary Sciences, 2018, 38(6): 1549-1551(in Chinese). |
[34] |
LU Y, LI Y D, LI Y, et al. Micro spatial analysis of seashell surface using laser-induced breakdown spectroscopy and Raman spectroscopy[J]. Spectrochimica Acta, 2015, B110: 63-69. |
[35] |
HAUSMANN N, SIOZOS P, LEMONIS A, et al. Elemental mapping of Mg/Ca intensity ratios in marine mollusc shells using laser-induced breakdown spectroscopy[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(8): 1467-1472. doi: 10.1039/C7JA00131B |
[36] |
HAUSMANN N, PRENDERGAST A L, LEMONIS A, et al. Extensive elemental mapping unlocks Mg/Ca ratios as climate proxy in seasonal records of mediterranean limpets[J]. Scientific Reports, 2019, 9(1): 3698. doi: 10.1038/s41598-019-39959-9 |