[1] |
李平雪, 杨春, 姚毅飞, 等. 980 nm光纤激光器的研究进展[J]. 激光与光电子学进展, 2013, 50(10): 100001.LI P X, YANG Ch, YAO Y F, et al. Research progress of 980 nm optical fiber laser [J]. Laser & Optoelectronics Progress, 2013, 50 (10): 100001(in Chinese). |
[2] |
韩凯, 马阎星, 王小林, 等. 高功率掺铥光纤激光的研究进展[J]. 激光与光电子学进展, 2010, 47(10): 101406.HAN K, MA Y X, WANG X L, et al. Progress of high power Tm-doped fiber laser [J]. Laser & Optoelectronics Progress, 2010, 47 (10): 101406(in Chinese). |
[3] |
孙国勇, 杨敬, 瞿荣辉, 等. 多波长掺铒光纤激光器的研究进展[J]. 激光与光电子学进展, 2014, 51(9): 90004.SUN G Y, YANG J, QU R H, et al. Research and progress of multiwavelength Erbium-doped fiber lasers [J]. Laser & Optoelectronics Progress, 2014, 51(9): 90004(in Chinese). |
[4] |
KIRSCH D C, CHEN S, SIDHARTHAN R, et al. Short-wave IR ultrafast fiber laser systems: Current challenges and prospective applications[J]. Journal of Applied Physics, 2020, 128(18): 180906. doi: 10.1063/5.0023936 |
[5] |
MINGAREEV I, WEIRAUCH F, OLOWINSKY A, et al. Welding of polymers using a 2 μm thulium fiber laser[J]. Optics & Laser Technology, 2012, 44(7): 2095-2099. |
[6] |
WOOD J, TURNER P H. Monitoring of itaconic acid hydrogenation in a trickle bed reactor using fiber-optic coupled near-infrared spectroscopy[J]. Applied Spectroscopy, 2003, 57(3): 293-298. doi: 10.1366/000370203321558209 |
[7] |
MAEDA Y, YAMADA M, ENDO T, et al. 1700 nm ASE light source and its application to mid-infrared spectroscopy[C]//2014 OptoElectronics and Communication Conference and Australian Conference on Optical Fibre Technology. Melbourne, Australia: IEEE, 2014: 410-411. |
[8] |
CHAMBERS P, AUSTIN E A D, DAKIN J P. Theoretical analysis of a methane gas detection system, using the complementary source mo-dulation method of correlation spectroscopy[J]. Measurement Science and Technology, 2004, 15(8): 1629-1636. doi: 10.1088/0957-0233/15/8/034 |
[9] |
BASHKATOV A N, GENINA E A, KOCHUBEY V I, et al. Optical properties of the subcutaneous adipose tissue in the spectral range 400-2500 nm[J]. Optics and Spectroscopy, 2005, 99(5): 836-842. doi: 10.1134/1.2135863 |
[10] |
HORTON N G, WANG K, KOBAT D, et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain[J]. Nature Photonics, 2013, 7(3): 205-209. doi: 10.1038/nphoton.2012.336 |
[11] |
TANAKA M, HIRANO M, MURASHIMA K, et al. 1.7 μm spectroscopic spectral-domain optical coherence tomography for imaging lipid distribution within blood vessel[J]. Optics Express, 2015, 23(5): 6645-6655. doi: 10.1364/OE.23.006645 |
[12] |
GUESMI K, ABDELADIM L, TOZER S, et al. Dual-color deep-ti-ssue three-photon microscopy with a multiband infrared laser[J]. Light: Science & Applications, 2018, 7(1): 1-9. |
[13] |
AKHOUNDI F, QIN Y, PEYGHAMBARIAN N, et al. Compact fiber-based multi-photon endoscope working at 1700 nm[J]. Biome-dical Optics Express, 2018, 9(5): 2326-2335. doi: 10.1364/BOE.9.002326 |
[14] |
卢宇, 李中梁, 王向朝, 等. 50 kHz血管内扫频光学相干层析成像系统[J]. 中国激光, 2017, 44(2): 0207001.LU Y, LI Zh L, WANG X Ch, et al. Development of 50 kHz intravascular swept source coherence tomography system[J]. Chinese Journal of Lasers, 2017, 44 (2): 0207001(in Chinese). |
[15] |
WU M, JANSEN K, VAN DER STEEN A F W, et al. Specific imaging of atherosclerotic plaque lipids with two-wavelength intravascular photoacoustics[J]. Biomedical Optics Express, 2015, 6(9): 3276-3286. doi: 10.1364/BOE.6.003276 |
[16] |
ALEXANDER V V, KE K, XU Z, et al. Photothermolysis of sebaceous glands in human skin ex vivo with a 1, 708 nm Raman fiber laser and contact cooling[J]. Lasers in Surgery and Medicine, 2011, 43(6): 470-480. doi: 10.1002/lsm.21085 |
[17] |
HASEGAWA T, SOGAWA I, SUGANUMA H. A near infrared angioscope visualizing lipid within arterial vessel wall based on multi-spectral image in 1.7 μm wavelength band[C]//Endoscopic Microscopy Ⅷ. San Francisco, California, USA: International Society for Optics and Photonics, 2013: 8575-8581. |
[18] |
BUMA T, CONLEY N C, CHOI S W. Multispectral photoacoustic microscopy of lipids using a pulsed supercontinuum laser[J]. Biomedical Optics Express, 2018, 9(1): 276-288. doi: 10.1364/BOE.9.000276 |
[19] |
张岩, 张鹏, 刘鹏, 等. 1.7 μm波段光纤光源研究进展及其应用[J]. 激光与光电子学进展, 2016, 53(9): 090002.ZHANG Y, ZHANG P, LIU P, et al. Fiber light source at 1.7 μm waveland and its application [J]. Laser & Optoelectronics Progress, 2016, 53(9): 090002(in Chinese). |
[20] |
李昊, 黄威, 崔宇龙, 等. 1.7 μm波段光纤激光器研究进展与展望[J]. 激光与光电子学进展, 2022, 59(19): 1900001.LI H, HUANG W, CUI Y L, et al. Progress and prospect of fiber lasers operating at 1.7 μm band [J]. Laser & Optoelectronics Progress, 2022, 59(19): 1900001(in Chinese). |
[21] |
战泽宇, 陈吉祥, 刘萌, 等. 1.7 μm超快光纤激光器研究进展(特邀)[J]. 红外与激光工程, 2022, 51(1): 223-237.ZHAN Z Y, CHEN J X, LIU M, et al. Recent progress of 1.7 μm ultrafast fiber laser (invited) [J]. Infrared and Laser Engineering, 2022, 51(1): 223-237(in Chinese). |
[22] |
AGGER S, POVLSEN J H, VARMING P. Single-frequency thulium-doped distributed-feedback fiber laser[J]. Optics Letters, 2004, 29(13): 1503-1505. doi: 10.1364/OL.29.001503 |
[23] |
ZHU H, GUO J, DUAN Y, et al. Efficient 1.7 μm light source based on KTA-OPO derived by Nd∶YVO4 self-Raman laser[J]. Optics Letters, 2018, 43(2): 345-348. doi: 10.1364/OL.43.000345 |
[24] |
SUN J J, CHEN Y, ZHANG K, et al. Efficient continuous wave and acousto-optical Q-switched Tm∶Lu2O3 laser pumped by the laser diode at 1.7 μm[J]. Infrared Physics & Technology, 2021, 116: 103771. |
[25] |
TILMA B W, JIAO Y, KOTANI J, et al. Integrated tunable quantum-dot laser for optical coherence to mography in the 1.7 μm wavelengthregion[J]. IEEE Journal of Quantum Electronics, 2012, 48(2): 87-98. doi: 10.1109/JQE.2011.2165317 |
[26] |
徐佳, 汪磊, 刘江, 等. 1653 nm窄线宽拉曼光纤放大器[J]. 中国激光, 2013, 40(6): 0602001.XU J, WANG L, LIU J, et al. Narrow line-wide 1653 nm Raman fiber amplifiers [J]. Chinese Journal of Lasers, 2013, 40(6): 0602001(in Chinese). |
[27] |
YAMADA M, ONO H, OHTA K, et al. 1.7 μm band optical fiber amplifier[C]//Optical Fiber Communication Conference. San Francisco, California, USA: Optical Society of America, 2014: Tu2D. |
[28] |
LI Z, ALAM S U, DANIEL J M O, et al. 90 nm gain extension towards 1.7 μm for diode-pumped silica-based thulium-doped fiber amplifiers[C]//2014 The European Conference on Optical Communication (ECOC). Cannes, France: IEEE, 2014: 1-3. |
[29] |
EMAMI S D, KHODAEI A, GANDAN S, et al. Thulium-doped fiber laser utilizing a photonic crystal fiber-based optical low-pass filter with application in 1.7 μm and 1.8 μm band[J]. Optics Express, 2015, 23(15): 19681-19688. doi: 10.1364/OE.23.019681 |
[30] |
LI Z, JUNG Y, DANIEL J M O, et al. Extreme short wavelength operation (1.65-1.7 μm) of silica-based thulium-doped fiber amplifier[C]//Optical Fiber Communication Conference. Los Angeles, California, USA: Optical Society of America, 2015: Tu2C. |
[31] |
ISHIDA S, NISHIZAWA N, OHTA T, et al. Ultrahigh-resolution optical coherence tomography in 1.7 μm region with fiber laser supercontinuum in low-water-absorption samples[J]. Applied Physics Express, 2011, 4(5): 052501. doi: 10.1143/APEX.4.052501 |
[32] |
KAWAGOE H, ISHIDA S, ARAMAKI M, et al. Development of a high power supercontinuum source in the 1.7 μm wavelength region for highly penetrative ultrahigh-resolution optical coherence tomography[J]. Biomedical Optics Express, 2014, 5(3): 932-943. doi: 10.1364/BOE.5.000932 |
[33] |
LI Z, JUNG Y, DANIEL J M O, et al. Exploiting the short wavelength gain of silica-based thulium-doped fiber amplifiers[J]. Optics Letters, 2016, 41(10): 2197-2200. doi: 10.1364/OL.41.002197 |
[34] |
CREEDEN D, JOHNSON B R, RINES G A, et al. High power re-sonant pumping of Tm-doped fiber amplifiers in core-and cladding-pumped configurations[J]. Optics Express, 2014, 22(23): 29067-29080. doi: 10.1364/OE.22.029067 |
[35] |
SHEN D Y, SAHU J K, CLARKSON W A. High-power widely tunable Tm∶fibre lasers pumped by an Er, Yb co-doped fibre laser at 1.6 μm[J]. Optics Express, 2006, 14(13): 6084-6090. doi: 10.1364/OE.14.006084 |
[36] |
DANIEL J M O, SIMAKOV N, TOKURAKAWA M, et al. Ultra-short wavelength operation of a thulium fibre laser in the 1660-1750 nm wavelength band[J]. Optics Express, 2015, 23(14): 18269-18276. doi: 10.1364/OE.23.018269 |
[37] |
PARK J, RYU S, YEOM D I. All-fiber Tm-Ho codoped laser ope-rating at 1700 nm[J]. Current Optics and Photonics, 2018, 2(4): 356-360. |
[38] |
BURNS M D, SHARDLOW P C, BARUA P, et al. 47 W continuous-wave 1726 nm thulium fiber laser core-pumped by an erbium fiber laser[J]. Optics Letters, 2019, 44(21): 5230-5233. doi: 10.1364/OL.44.005230 |
[39] |
FIRSTOV S V, ALYSHEV S V, RIUMKIN K E, et al. Watt-level, continuous-wave bismuth-doped all-fiber laser operating at 1.7 μm[J]. Optics Letters, 2015, 40(18): 4360-4363. doi: 10.1364/OL.40.004360 |
[40] |
DIANOV E M, FIRSTOV S V, KHOPIN V F, et al. Bismuth-doped fibers and fiber lasers for a new spectral range of 1600-1800 nm[C]//Fiber Lasers ⅩⅢ∶Technology, Systems, and Applications. San Francisco, California, USA: International Society for Optics and Photonics, 2016: 9728. |
[41] |
FIRSTOV S V, ALYSHEV S V, RIUMKIN K E, et al. Laser-active fibers doped with bismuth for a wavelength region of 1.6-1.8 μm[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(5): 1-15. |
[42] |
NEMOVA G, QIAO J, CHEN L R, et al. Dual-wavelength, cascaded cavities bismuth-doped fiber laser in 1.7 μm wavelength range[C]// Fiber Lasers ⅩⅥ: Technology and Systems. San Francisco, California, USA: International Society for Optics and Photonics, 2019, 10897. |
[43] |
THOUROUDE R, GILLES H, CADIER B, et al. Linearly-polarized high-power Raman fiber lasers near 1670 nm[J]. Laser Physics Let-ters, 2019, 16(2): 025102. doi: 10.1088/1612-202X/aaf6a4 |
[44] |
THOUROUDE R, GILLES H, ROBIN T, et al. Efficient random Raman fiber laser at 1650 nm[C]//Applications of Lasers for Sensing and Free Space Communications. Vienna, Austria: Optical Society of America, 2019: JTh3A. |
[45] |
LEHNEIS R, STEINMETZ A, LIMPERT J, et al. All-fiber pulse shortening of passively Q-switched microchip laser pulses down to sub-200 fs[J]. Optics Letters, 2014, 39(20): 5806-5809. doi: 10.1364/OL.39.005806 |
[46] |
ZHANG Z, YAN Z, ZHOU K, et al. All-fiber 250 MHz fundamental repetition rate pulsed laser with tilted fiber grating polarizer[J]. Laser Physics Letters, 2015, 12(4): 045102. doi: 10.1088/1612-2011/12/4/045102 |
[47] |
ZHAO C, ZHANG H, QI X, et al. Ultra-short pulse generation by a topological insulator based saturable absorber[J]. Applied Physics Letters, 2012, 101(21): 211106. doi: 10.1063/1.4767919 |
[48] |
ZHANG Z, MOU C, YAN Z, et al. Sub-100 fs mode-locked erbium-doped fiber laser using a 45°-tilted fiber grating[J]. Optics Express, 2013, 21(23): 28297-28303. doi: 10.1364/OE.21.028297 |
[49] |
OBER M H, HOFER M, FERMANN M E. 42-fs pulse generation from a mode-locked fiber laser started with a moving mirror[J]. Optics Letters, 1993, 18(5): 367-369. doi: 10.1364/OL.18.000367 |
[50] |
NGUYEN T N, KIEU K, CHURIN D, et al. High power soliton self-frequency shift with improved flatness ranging from 1.6 to 1.78 μm[J]. IEEE Photonics Technology Letters, 2013, 25(19): 1893-1896. doi: 10.1109/LPT.2013.2279239 |
[51] |
NORONEN T, OKHOTNIKOV O, GUMENYUK R. Electronically tunable thulium-holmium mode-locked fiber laser for the 1700-1800 nm wavelength band[J]. Optics Express, 2016, 24(13): 14703-14708. doi: 10.1364/OE.24.014703 |
[52] |
CHUNG H Y, LIU W, CAO Q, et al. Er-fiber laser enabled, energy scalable femtosecond source tunable from 1.3 to 1.7 μm[J]. Optics Express, 2017, 25(14): 15760-15771. doi: 10.1364/OE.25.015760 |
[53] |
KHEGAI A, MELKUMOV M, RIUMKIN K, et al. NALM-based bismuth-doped fiber laser at 1.7 μm[J]. Optics Letters, 2018, 43(5): 1127-1130. doi: 10.1364/OL.43.001127 |
[54] |
CHEN S, CHEN Y, LIU K, et al. W-type normal dispersion thulium-doped fiber-based high-energy all-fiber femtosecond laser at 1.7 μm[J]. Optics Letters, 2021, 46(15): 3637-3640. doi: 10.1364/OL.431023 |
[55] |
MORIN P, BOIVINET S, YEHOUESSI J P, et al. Sub-150-fs all-fiber polarization maintaining tunable laser in the mid-infrared[C]// Fiber Lasers ⅩⅦ: Technology and Systems. San Francisco, California, USA: International Society for Optics and Photonics, 2020: 112601M. |
[56] |
GRIMES A, HARIHARAN A, SUN Y, et al. Hundred-watt CW and Joule level pulsed output from Raman fiber laser in 1.7 μm band[C]//Fiber Lasers ⅩⅦ: Technology and Systems. San Francisco, California, USA: International Society for Optics and Photonics, 2020: 112601S. |
[57] |
CHEN S, CHEN Y, LIU K, et al. All-fiber short-wavelength tunable mode-locked fiber laser using normal dispersion thulium-doped fiber[J]. Optics Express, 2020, 28(12): 17570-17580. doi: 10.1364/OE.395167 |
[58] |
XUE G, ZHANG B, YIN K, et al. All-fiber wavelength-tunable Tm/Ho-codoped laser between 1727 nm and 2030 nm[J]. Proceedings of the SPIE, 2015, 9255: 92550U. doi: 10.1117/12.2071092 |
[59] |
XIAO X Sh. 3W narrow-linewidth ultra-short wavelength operation near 1707nm in thulium-doped silica fiber laser with bidirectional pumping[J]. Applied Physics, 2017, B123(4): 1-6. |
[60] |
ZHANG J X, SHENG Q, SUN Sh, et al. 1720 nm narrow-linewidth all-fiber ring laser based on thulium-doped fiber[C]//Fiber Lasers ⅩⅦ: Technology and Systems. San Francisco, California, USA: International Society for Optics and Photonics, 2020: 112600V. |
[61] |
ZHANG L, ZHANG J X, SHENG Q, et al. Efficient multi-watt 1720 nm ring-cavity Tm-doped fiber laser[J]. Optics Express, 2020, 28(25): 37910-37918. doi: 10.1364/OE.411671 |
[62] |
ZHANG J X, SHENG Q, ZHANG L, et al. Single-frequency 1.7 μm Tm-doped fiber laser with optical bistability of both power and longitudinal mode behavior[J]. Optics Express, 2021, 29(14): 21409-21417. doi: 10.1364/OE.424336 |
[63] |
ZHANG L, ZHANG J, SHENG Q, et al. Watt-level 1.7 μm single-frequency thulium-doped fiber oscillator[J]. Optics Express, 2021, 29(17): 27048-27056. doi: 10.1364/OE.434001 |
[64] |
ZHANG L, ZHANG J, SHENG Q, et al. 1.7 μm Tm-doped fiber laser intracavity-pumped by an erbium/ytterbium-codoped fiber laser[J]. Optics Express, 2021, 29(16): 25280-25289. doi: 10.1364/OE.432898 |
[65] |
CEN X, GUAN X, YANG C, et al. Short-wavelength, in-band-pumped single-frequency DBR Tm3+-doped germanate fiber laser at 1.7 μm[J]. IEEE Photonics Technology Letters, 2021, 33(7): 350-353. doi: 10.1109/LPT.2021.3056047 |
[66] |
ZHANG Y, SONG J, YE J, et al. Tunable random Raman fiber laser at 1.7 μm region with high spectral purity[J]. Optics Express, 2019, 27(20): 28800-28807. doi: 10.1364/OE.27.028800 |
[67] |
FANG X, WANG Z, ZHAN L. Efficient generation of all-fiber femtosecond pulses at 1.7 μm via soliton self-frequency shift[J]. Optical Engineering, 2017, 56(4): 046107. doi: 10.1117/1.OE.56.4.046107 |
[68] |
PEI W, LI H, HUANG W, et al. All-fiber tunable pulsed 1.7 μm fiber lasers based on stimulated raman scattering of hydrogen molecules in hollow-core fibers[J]. Molecules, 2021, 26(15): 4561. doi: 10.3390/molecules26154561 |
[69] |
LI H, PEI W, HUANG W, et al. Highly efficient nanosecond 1.7 μm fiber gas Raman laser by H2-filled hollow-core photonic crystal fibers[J]. Crystals, 2021, 11(1): 32-34. |
[70] |
PEI W, LI H, HUANG W, et al. Pulsed fiber laser oscillator at 1.7 μm by stimulated Raman scattering in H2-filled hollow-core photonic crystal fibers[J]. Optics Express, 2021, 29(21): 33915-33925. doi: 10.1364/OE.440461 |
[71] |
CHEN J X, LI X Y, LI T J, et al. 1.7-μm dissipative soliton Tm-doped fiber laser[J]. Photonics Research, 2021, 9(5): 873-878. doi: 10.1364/PRJ.419273 |
[72] |
DU T, RUAN Q, YANG R, et al. 1.7 μm Tm/Ho-codoped all-fiber pulsed laser based on intermode-beating modulation technique[J]. Journal of Lightwave Technology, 2018, 36(20): 4894-4899. doi: 10.1109/JLT.2018.2865993 |
[73] |
何鑫. 用于深层生物组织多光子成像的飞秒光纤激光器研究[D]. 西安: 西北大学, 2020: 61-70.HE X. Femtosecond fiber laser for deep biological tissue multiphoton [D]. Xi'an: Northwestern University, 2020: 61-70(in Chinese). |
[74] |
JELÍNKOVÁ H, DOROSHENKO M E, ŠULC J, et al. Laser-diode pumped dysprosium-doped lead thiogallate laser output wavelength temporal evolution and tuning possibilities at 4.3-4.7 μm[C]//So-lid State Lasers ⅩⅩⅤ: Technology and Devices. San Francisco, California, USA: International Society for Optics and Photonics, 2016: 97261A. |
[75] |
QUIMBY R S, SHAW L B, SANGHERA J S, et al. Modeling of cascade lasing in Dy∶chalcogenide glass fiber laser with efficient output at 4.5 μm[J]. IEEE Photonics Technology Letters, 2008, 20(2): 123-125. doi: 10.1109/LPT.2007.912541 |
[76] |
刘毅, 于晋龙, 王红杰, 等. 基于反馈光纤环的可调多波长布里渊掺铒光纤激光器[J]. 中国激光, 2014, 41(2): 202003.LIU Y, YU J L, WANG H J, et al. Tunable multiwavelength Bri-llouin-erbium fiber laser based on feedback fiber loop[J]. Chinese Journal of Lasers, 2014, 41 (2): 202003(in Chinese). |
[77] |
MA D, CAI Y, ZHOU C, et al. 37.4 fs pulse generation in an Er∶fiber laser at a 225 MHz repetition rate[J]. Optics Letters, 2010, 35(17): 2858-2860. doi: 10.1364/OL.35.002858 |
[78] |
何雨莲, 罗鸿禹, 李静, 等. 全光纤高功率被动锁模掺铥光纤激光器[J]. 强激光与粒子束, 2014, 26(10): 102-106.HE Y L, LUO H Y, LI J, et al. High power all fiber passively mode-locked thulium-doped fiber laser [J]. High Power all Laser and Particle Beams, 2014, 26 (10): 102-106(in Chinese). |
[79] |
ANSELMO C, WELSCHINGER J Y, CARIOU J P, et al. Gas concentration measurement by optical similitude absorption spectroscopy: Methodology and experimental demonstration[J]. Optics Express, 2016, 24(12): 12588-12599. doi: 10.1364/OE.24.012588 |
[80] |
朱雁军, 樊孝华, 高潮, 等. 用于开放光程氯化氢检测的激光气体传感器[J]. 激光杂志, 2017, 38(7): 17-20.ZHU Y J, FAN X H, GAO Ch, et al. Laser gas sensor for open path hydrogen chloride detection[J]. Laser Journal, 2017, 38 (7): 17-20(in Chinese). |
[81] |
TANO Y, TANAKA M, HONDA Y, et al. Evaluation of high alcohol concentration using a 1.7 μm band near-infrared spectroscopy system using multi-mode optical fibers[C]//2018 23rd Opto-Electronics and Communications Conference (OECC). Jeju, Korea: IEEE, 2018: 1-2. |
[82] |
VIZBARAS A, ŠIMONYTE· I, MIASOJEDOVAS A, et al. Swept-wavelength lasers based on GaSb gain-chip technology for non-invasive biomedical sensing applications in the 1.7-2.5 μm wavelength range[J]. Biomedical Optics Express, 2018, 9(10): 4834-4849. doi: 10.1364/BOE.9.004834 |
[83] |
MAJEWSKI M R, WOODWARD R I, JACKSON S D. Dysprosium-doped ZBLAN fiber laser tunable from 2.8 μm to 3.4 μm, pumped at 1.7 μm[J]. Optics Letters, 2018, 43(5): 971-974. doi: 10.1364/OL.43.000971 |
[84] |
瞿崇兵, 康民强, 向祥军, 等. 双波长泵浦4.3 μm Dy∶InF3高能中红外光纤激光理论研究[J]. 中国激光, 2020, 47(8): 0801003.QU Ch B, KANG M Q, XIANG X J, et al. Theoretical study of 4.3 μm dual-wavelength pumped Dy: InF3 high energy med-infrared fiber lasers [J]. Chinese Journal of Lasers, 2020, 47(8): 0801003 (in Chinese). |
[85] |
DOROSHENKO M E, JELÍNKOVÁ H, ŘÍHA A, et al. Mid-IR (4.4 μm) Zn1-x MnxSe: Cr2+, Fe2+(x=0.3) laser pumped by 1.7 μm laser using Cr2+-Fe2+ energy transfer[J]. Optics Letters, 2019, 44(11): 2724-2727. doi: 10.1364/OL.44.002724 |
[86] |
LI Y, MURTHY R S, ZHU Y, et al. 1.7-Micron optical coherence tomography angiography for characterization of skin lesions-a feasibility study[J]. IEEE Transactions on Medical Imaging, 2021, 40(9): 2507-2512. doi: 10.1109/TMI.2021.3081066 |
[87] |
DASA M K, MARKOS C, MARIA M, et al. High-pulse energy supercontinuum laser for high-resolution spectroscopic photoacoustic imaging of lipids in the 1650-1850 nm region[J]. Biomedical Optics Express, 2018, 9(4): 1762-1770. doi: 10.1364/BOE.9.001762 |
[88] |
LI C, SHI J, GONG X, et al. 1.7 μm wavelength tunable gain-switched fiber laser and its application to spectroscopic photoacoustic imaging[J]. Optics Letters, 2018, 43(23): 5849-5852. doi: 10.1364/OL.43.005849 |
[89] |
LI M Sh, SHI J W, YIU C C Y, et al. Near-infrared double-illumination optical-resolution photoacoustic microscopy[J]. Journal of Biophotonics, 2021, 14(3): e202000392. |
[90] |
LI C, SHI J, WANG X, et al. High-energy all-fiber gain-switched thulium-doped fiber laser for volumetric photoacoustic imaging of lipids[J]. Photonics Research, 2020, 8(2): 160-164. doi: 10.1364/PRJ.379882 |
[91] |
YOON T I, PARK J S, LEE B H, et al. Brain tumor margin detection using 1.7 μm spectroscopic swept-source OCT[C]//European Conference on Biomedical Optics. Munich, Germany: Optical Society of America, 2021: EW1C. 6(1-3). |
[92] |
都权力. 1.7 μm光纤宽带光源及其在光学相干层析成像系统中的应用[D]. 长春: 长春理工大学, 2018: 1-53.DU Q L. 1.7 μm fiber broadband light source and its application in optical coherence tomography system[D]. Changchun: Changchun University of Science and Technology, 2018: 1-53(in Chinese). |
[93] |
吴迪, 张鹏, 李晓燕, 等. 基于级联调制器抽运源的1.7 μm波段宽带光源[J]. 中国激光, 2019, 46(5): 0506003.WU D, ZHANG P, LI X Y, et al. Broadband light source at 1.7 μm based on cascade-modulator pumping[J]. Chinese Journal of Lasers, 2019, 46(5): 0506003(in Chinese). |
[94] |
贺振兴, 张鹏, 吴迪, 等. 基于ASE泵浦的1.7 μm波段可调谐多波长拉曼光纤激光器实验研究[J]. 激光与光电子学进展, 2020, 57(7): 071403.HE Zh X, ZHANG P, WU D, et al. Experimental study of a 1.7 μm tunable multi-wavelength Raman fiber laser based on an amplified spontaneous emission pump[J]. Laser & Optoelectronics Progress, 2020, 57(7): 071403(in Chinese). |
[95] |
贺振兴. 1.7 μm波段脉冲光纤激光器技术研究[D]. 长春: 长春理工大学, 2020: 1-64.HE Zh X. Research on technology of 1.7 μm pulse fiber laser [D]. Changchun: Changchun University of Science and Technology, 2020: 1-64(in Chinese). |
[96] |
LI Q, ZHANG P, FAN Y, et al. 1.7 μm gain-switched and mode-locked hybrid Tm-Ho codoped fiber laser signal generation and optimization[J]. Applied Optics, 2022, 61(2): 455-462. doi: 10.1364/AO.446575 |