[1] |
YUAN J, ZHANG Y J, GAO F P.A review of linear hyperspectral unmixing models[J].Journal of Infrared and Millimeter Waves, 2018, 37(5):553-571(in Chinese). |
[2] |
QI Y F, MA Zh Y.Hyperspectral image classification method based on neighborhood spectra and probability cooperative representation[J].Laser Technology, 2019, 43(4):448-452(in Chinese). |
[3] |
SHAN L X. Hyperspectral image sub-pixel small target detection [D]. Xi'an: Xi'an University of Electronic Science and Technology, 2017: 16-24(in Chinese). |
[4] |
BAJORSKI P. Target detection under misspecified models in hyperspectral images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(2): 470-477. doi: 10.1109/JSTARS.2012.2188095 |
[5] |
SUN L, BAO J H, LIU Y Ch.Analysis of target detection algorithm for hyperspectral images[J].Science and Mapping Science, 2012, 37(1):131-132(in Chinese). |
[6] |
REED I S, YU X L. Adaptive multi-band CFAR detection of an optical pattern with unknown spectral distribution [J]. IEEE Transactions on Acoustics Speech and Signal Process, 1990, 38(10): 1760-1766. doi: 10.1109/29.60107 |
[7] |
YU X L, HOFF L E, REED I S, et al. Automatic target detection and recognition in multiband imagery: A unified ML detection and estimation approach[J]. IEEE Transactions on Image Processing, 1997, 6(1): 143-156. |
[8] |
DU Sh Sh, LI Sh Y, ZENG Zh Y. Influence of background uncertainty on the detection of hyperspectral anomaly targets[J].Journal of PLA University of Science and Technology(Natural Science Edition), 2016, 17(6):598-604(in Chinese). |
[9] |
SMETEK T E, BAUER K W. Finding hyperspectral anomalies using multivariate outlier detection[C]//Aerospace Conference, 2007 IEEE. New York, USA: IEEE, 2007: 1-24. |
[10] |
ZHAO Ch H, WANG X P, YAN Y M.Hyperspectral anomaly detection algorithm based on density background purification[J].Journal of Harbin Engineering University, 2016, 37(12):1722-1727(in Chinese). |
[11] |
ZHAO Ch H, LI J, MEI F.A kernel-weighted RX hyperspectral image anomaly detection algorithm[J].Journal of Infrared and Millimeter Waves, 2010, 29(5):378-382(in Chinese). |
[12] |
DU B, ZHANG L P. Random-selection-based anomaly detector for hyperspectral imagery[J].IEEE Transaction on Geoscience and Remote Sensing, 2011, 49(5):1578-1589. doi: 10.1109/TGRS.2010.2081677 |
[13] |
TAITANO Y P, GEIER B A, BAUER K W. A locally adaptable iterative RX detector[J]. EURASIP Journal on Advances in Signal Processing, 2010, 2010(1) : 341908. doi: 10.1155/2010/341908 |
[14] |
LIU W M, CHANG C I. Multiple-window anomaly detection for hyperspectral imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2013, 6(2):644-658. |
[15] |
ZHAO Ch H, HU Ch M.Hyperspectral image anomaly detection algorithm based on target orthogonal subspace projection weighting[J].Journal of Jilin University, 2011, 41(5):1468-1474(in Chinese). |
[16] |
MEI F, ZHAO Ch H. Analysis of nuclear RX hyperspectral image anomaly detection based on spatial filtering[J].Journal of Harbin Engineering University, 2009, 30(6): 697-702(in Chinese). |
[17] |
CHANG C I, HEINZ D C. Constrained subpixel detection for remotely sensed images[J].IEEE Transactions on Geoscience & Remote Sensing, 2000, 38(3):1144-1159. |