[1] |
VANIER J, MANDACHE C. The passive optically pumped Rb frequency standard: The laser approach[J]. Applied Physics, 2007, B87(4): 565-593. |
[2] |
WIEMAN C E, HOLLBERG L. Using diode lasers for atomic physics[J]. Review of Scientific Instruments, 1991, 62(1): 21-42. doi: 10.1063/1.1142310 |
[3] |
NUMATA K, CHEN J R, WU S T, et al. Frequency stabilization of distributed-feedback laser diodes at 1572nm for lidar measurements of atmospheric carbon dioxide[J]. Applied Optics, 2011, 50(7):1047-1056. doi: 10.1364/AO.50.001047 |
[4] |
NAKAZAWA M. Recent progress on ultrafast/ultrashort/frequency-stabilized erbium-doped fiber lasers and their applications[J]. Frontiers of Optoelectronics in China, 2010, 3(1):38-44. doi: 10.1007/s12200-009-0085-x |
[5] |
GUO Sh L, WANG J. Efficient generation of a continuous-wave, tunable 780nm laser via an optimized cavity-enhanced frequency doubling of 1.56μm at low pump powers[J]. Optical and Quantum Electronics, 2017, 49(35):1-16. |
[6] |
CHIOW S, KOVACHY T, JASON M H, et al. Generation of 43W of quasi-continuous 780nm laser light via high-efficiency, single-pass frequency doubling in periodically poled lithium niobate crystals[J]. Optics Letters, 2012, 37(18):3861-3863. doi: 10.1364/OL.37.003861 |
[7] |
ONERA D. Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560nm[J]. Applied Physics, 2007, B89(23):177-180. |
[8] |
KE D, ZHAI S Y, WANG X L, et al. Design of a reflective cavity for laser enhancement of the fourth harmonic generation[J]. Laser Technology, 2016, 40(2): 155-158(in Chinese). |
[9] |
BOYD G D, KLEINMAN D A. Parametric interaction of focused gaussian light beams[J]. Applied Physics, 1968, 39(8):3597-3639. doi: 10.1063/1.1656831 |
[10] |
FENG J X, LI Y M, LIU Q, et al. High-efficiency generation of a continuous-wave single-frequency 780nm laser by external-cavity frequency doubling[J]. Applied Optics, 2007, 46(17):3593-3596. doi: 10.1364/AO.46.003593 |
[11] |
SANE S S, BENNETTS S, DEBS J E, et al. 11W narrow linewidth laser source at 780nm for laser cooling and manipulation of rubidium[J]. Optics Express, 2012, 20(8):8915-8919. doi: 10.1364/OE.20.008915 |
[12] |
THOMPSON R, TU M, AVELINE D, et al. High power single frequency 780nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals[J]. Optics Express, 2003, 11(14): 1709-1713. doi: 10.1364/OE.11.001709 |
[13] |
SAEED G S, SUDDAPALLI C K, ALIREZA K, et al. Thermal effects in high-power continuous-wave single-pass second harmonic generation[J]. Quantum Electronics, 2014, 20(4):563-572. |
[14] |
HASHEMI S S, SABOURI S G, KHORSANDI A. The effect of thermal de-phasing on the beam quality of a high-power single-pass second harmonic generation[J]. Journal of Optics, 2018, 20(4): 045502. doi: 10.1088/2040-8986/aab1df |
[15] |
GUO Sh L, HAN Y Sh, WANG J, et al. Investigation of quasi-phase-matching frequency doubling of 1560nm laser by use of PPLN and PPKTP crystals[J]. Acta Optica Sinica, 2012, 32(3): 0319001(in Chinese). doi: 10.3788/AOS201232.0319001 |
[16] |
LOU Q H. High-power fiber laser and its applications[M]. Hefei: University of Science and Technology of China Press, 2009: 130-131(in Chinese). |
[17] |
FEJER M M, MAGEL G A, JUNDT D H, et al. Quasi-phase-matched second harmonic genera-tion:Tuning and tolerances[J]. Quantum Electronics, 1992, 28(11): 2631-2654. doi: 10.1109/3.161322 |
[18] |
MIZUUCHI K, MORIKAWA A, SUGTTA T, et al. High-power continuous wave green generation by single-pass frequency doubling of a Nd:GdVO4 laser in a periodically poled MgO:LiNbO3 operating at room temperature[J]. Japanese Journal of Applied Physics, 2003, 42(2): L1296-L1298. |
[19] |
ZHANG Y T, QU T Zh, QIAN J, et al. Thermal effect analysis of 1560nm laser frequency doubling in a PPLN crystal[J]. Chinese Journal of Lasers, 2015, 42(7):0708002(in Chinese). doi: 10.3788/CJL201542.0708002 |