[1] |
MARTYNA A, MICHALSKA A, ZADORA G. Interpretation of FTIR spectra of polymers and Raman spectra of car paints by means of likelihood ratio approach supported by wavelet transform for reducing data dimensionality[J]. Analytical and Bioanalytical Chemistry, 2015, 407(12):3357-3376. |
[2] |
GRUNERT T, STEPHAN R, EHLINGSCHULZ M, et al. Fourier transform infrared spectroscopy enables rapid differentiation of fresh and frozen/thawed chicken[J]. Food Control, 2016, 60: 361-364. |
[3] |
BUITRAGO M F, SKIDMORE A K, GROEN T A, et al. Connecting infrared spectra with plant traits to identify species[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 139: 183-200. |
[4] |
DAVOODI M M, SAPUAN S M, AHMAD D, et al. Mechanical properties of hybrid kenaf/glass reinforced epoxy composite for passenger car bumper beam[J]. Materials & Design, 2010, 31(10): 4927-4932. |
[5] |
AGUNSOYE J O, ODUMOSU A K, DADA O, et al. Novel epoxy-carbonized coconut shell nanoparticles composites for car bumper application[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102: 893-899. |
[6] |
HE X L, WAN J F, L Q Sh, et al. Infrared spectral identification of vehicle bumper based on multilayer perceptron-fisher discriminant analysis[J]. China Test, 2019, 45(5):74-78 (in Chinese). |
[7] |
HE X L, MA Y, WANG J F, et al. Qualitative and quantitative rapid detection of mid-infrared spectroscopy for vehicle bumpers[J]. Engineering Plastics Application, 2019, 47(5): 122-126(in Chinese). |
[8] |
KITAZATO K, MILLIKEN R E, IWATA T, et al. The surface composition of asteroid 162173 ryugu from hayabusa2 near-infrared spectroscopy[J]. Science, 2019, 364(6437):272-275. |
[9] |
de BRUYNE S, SPEECKAERT R, BOELENS J, et al. Infrared spectroscopy as a novel tool to diagnose onychomycosis[J]. British Journal of Dermatology, 2019, 180(3): 637-646. |
[10] |
HE X L, WANG J F, ZHANG Q, et al. Infrared spectral analysis ofmarker ink based on multi-classification model[J]. Chemistry, 2019, 82(2):169-174(in Chinese). |
[11] |
MANFREDI M, ROBOTTI E, QUASSO F, et al. Fast classification of hazelnut cultivars through portable infrared spectroscopy and chemometrics[J]. Spectrochimica Acta Part: Molecular and Biomolecular Spectroscopy, 2018, A189: 427-435. |
[12] |
CRAIG A P, BOTELHO B G, OLIVEIRA L S, et al. Mid infrared spectroscopy and chemometrics as tools for the classification of roasted coffees by cup quality[J]. Food Chemistry, 2018, 245: 1052-1061. |
[13] |
OUYANG Y P, CHENG L, WU H Ch, et al. Study on general model of qualitative and quantitative analysis of alcohol gasoline[J]. Laser Technology, 2019, 43(3):363-368(in Chinese). |
[14] |
LIU Y D, XU H, SUN X D, et al. Non-destructive detection of tomato maturity by near-infrared diffuse transmission spectroscopy[J]. Laser Technology, 2019, 43(1):25-29(in Chinese). |
[15] |
HE X L, WANG J F, LIU T F, et al. Fourier infrared spectroscopy combined with chemometrics method to distinguish and identify plastic steel windows[J]. Physical and Chemical Testing (Chemistry), 2018, 54(11):1318-1323(in Chinese). |
[16] |
SONG S Y, LEE Y K, KIM I, et al. Sugar and acid content of citrus prediction modeling using FT-IR fingerprinting in combination with multivariate statistical analysis[J]. Food Chemistry, 2016, 190: 1027-1032. |
[17] |
HONG T, HAN D, KIM D H, et al. Simultaneous estimation of PD, T1, T2, T2*, and ΔB0 using magnetic resonance fingerprinting with background gradient compensation[J]. Magnetic Resonance in Medicine, 2019, 81(4): 2614-2623. |
[18] |
DING H, WANG X, WANG Y, et al. Ensemble classification of hyperspectral images by integrating spectral and texture features[J]. Journal of the Indian Society of Remote Sensing, 2019, 47(1): 113-123. |
[19] |
CHEN H, XU W, BRODERICK N G, et al. An adaptive and fully automated baseline correction method for raman spectroscopy based on morphological operations and mollification[J]. Applied Spectroscopy, 2019, 73(3): 284-293. |
[20] |
AHMED M, AZAM M. Causal nexus between energy consumption and economic growth for high, middle and low income countries using frequency domain analysis[J]. Renewable & Sustainable Energy Reviews, 2016, 60: 653-678. |
[21] |
HE X L, WANG J F, WU F L, et al. Identification of rubber particles based on chemometrics by infrared spectroscopy[J].Journal of Analytical Science, 2019, 35(3):357-361(in Chinese). |